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Abstract

We consider linear schemes with several degrees of freedom for the transport equation on uniform meshes. For these
schemes the solution error is O(h? + th?), where p is equal to or greater by one than the order of the truncation error
and ¢ > p. We prove the existence of a mapping of smooth functions on the mesh space providing the g-th order of
the truncation error and deviating from the standard mapping (Ls-projection for example) by O(h?). In 1D case this
mapping can be found in the class of local mappings. In more dimensions the existence of a local mapping with such
properties is guaranteed only under additional assumptions.
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1. Introduction

The simplest approach to establish an estimate for the solution error of a numerical method is the analysis of the
truncation error. A stable scheme possessing the truncation error of order P4 gives the solution with the error of the
same order. But this estimate can be very far from optimal. For instance, the DG(k) method (discontinuous Galerkin
method based on the polynomials of order k) on the uniform meshes has the truncation error of order max{k, 1}, while
the numerical solution of the Cauchy problem for the model transport equation dv/dt + dv/Ox = 0 obtained by this
scheme possesses an error estimate of the form

len(®)|lz < CrRETY 4 Cyn? 1t (1.1)

The comparison of the solution error by the 5-th order finite-difference scheme and the DG(4) method of the same order
of accuracy is presented in Fig. [Il. The estimate ([L.1}) follows directly from the results of [[I]] based on negative norm
estimates which essentially use the finite-element nature of the DG scheme. We will consider another two methods
that can be used to obtain such estimates.

The spectral analysis is a classical approach to study linear difference schemes (both semi-discrete and fully dis-
crete) with constant coefficients on uniform meshes under periodic boundary conditions. In the case of 1 DOF per
cell a wide range of its applications can be found in [2]. This method was successfully applied also for the schemes
with several DOFs. For the DG method it was used in [3, 4, 5, 6], for the spectral difference method in [[7, 8], for
the flux reconstruction method (the class including the first two) in [9, [10], etc. Although the main application of the
spectral analysis is to ensure stability, it can be applied for the accuracy analysis also. Lowrie [3] used it to understand
the enhanced accuracy of DG(k) for k = 1,2, 3, but details were not presented. In [5] the estimate (1) was proved
for DG(1). In [6] this was proved for DG(2) and DG(3) using symbolic computations. To find the spectrum, one
needs to find the roots of the polynomial of order m = k + 1 with the coefficients depending on the wave number.
If m > 4, it is not generally solvable by radicals. Thus the authors of [(] could not extend their analysis to k£ > 3.
Note also the papers [[L1, [12] where the spectral analysis was combined with the finite-element technique to prove
len(t)|lz < C1hFTY 4 Coh*+3/2¢ for DG(k), k > 1, on non-uniform meshes.
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Figure 1: The L2 norm of the solution error of Ov/dt + dv/Ox = 0, vg = sin(27z) obtained by the 5th order finite-difference scheme (left) and
the DG(4) method (right)

The error estimate ([L.1)) for DG(k), k € N, was obtained by another approach which we call the method of auxiliary
mapping. Let IT;, be an operator prescribing the initial data for the discrete (or semidiscrete) problem, i. e. taking each
f to amesh function f,. In the case of DG(k), a mesh function is a piecewise polynomial of order &, and the operator
11}, is the Ly-projection onto the space of mesh functions. The idea of the method is to introduce a new mapping II;,
such that for a sufficiently smooth function f there holds

(AD) nf — I fl2 < Coh™; )
(A2) the scheme possesses the truncation error of order () > P in the sense of I1.

By stability these properties guarantee (see Proposition §.2) that in the sense of I, the solution error possesses an
estimate of the form
len(t)]l2 < C1h" + C2h®t, Q= P> 0. (1.2)

For the standard Galerkin method for elliptic and parabolic problems, the auxiliary mapping is usually chosen as the
Ritz projection.

The first application of the method of auxiliary mapping to the DG scheme for the transport equation is also due to
Lowrie for k = 1 (see formulas (5.81) and (5.82) in [3]). In [[13] the estimate ([[.2) was proved for an arbitrary & and
P = Q = k+1 using the Gauss—Radau projection. In [[14] the estimate ||ej, (t)||2 < C1h*T! + Cohk+242 was proved.
Finally, the optimal result ([L.1)) was obtained in [[15]. On a uniform mesh the auxiliary mapping HEIP’Q) introduced in
[15] takes each f € VVQQEOLC1 (R) to the mesh function HEIP’Q) f defined on each cell € Z by

QR m
(195) =+ 35 (5 (£ w
h " h n ot h dxm " ’

where (IIj, f),, and (HELP’Q) f)n are the polynomials at cell 7, and P,(lm) are some linear mappings to the mesh space.
The difference between the modified mapping and the original mapping (the last term in ([.3)) is called a correction
function (in [[15]) or a corrector (in [[L6]). Note that estimate ([L.1)) is valid for arbitrary non-uniform meshes (assuming
h = hmax), but this is a specific feature of the DG method. Further results in the accuracy of the DG method were
obtained in [[17] (2D), [|L8, [19, 20] (variable coefficients), [21] (energy-conserving DG), Runge —Kutta time integration
[22] etc.

Estimates of the form ([1.2) with some P and Q, where Q is greater than the order of the truncation error, are valid
not only for the DG method but also for some other schemes with several degrees of freedom per cell. A scheme on
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a periodic mesh shows the same behavior if the mesh is refined by scaling (see Fig. B). In this case we assume that if
the mesh is scaled by a factor then h is multiplied by the same factor.

Consider an L-stable scheme with a local mapping IT;, (for the definition of “local” see Section .3). The existence
of a mapping II;, satisfying (A1) and (A2) for some P and @ proves the estimate (.Z). We are concerned with the
following related problems.

1. How to get the optimal values of P and ) in the estimate ([L.2)?
2. Does a mapping IIj, satisfying (A1) and (A2) for these P and () exist?
3. How to construct it?

The main results of this paper are presented in three theorems. Theorem [l] gives the optimal value of P. Theorem P
claims that the auxiliary mapping ITj, does exist. Theorem [J states that in 1D and some multidimensional cases it can
be found in a form similar to ([L.3), that is the original mapping is modified using a local corrector. This leads to an
algorithm which reduces the problem of finding the optimal values of P and @ in the estimate ([L.2)) to solving a linear
system. However, in the general multidimensional case the situation is more tricky: generally the required corrector
is nonlocal and the optimal value of () can be non-integer.

The rest of the paper is organized as follows. In Section [ we present a mathematical formulation of the problem.
In Section [§ we state the main results. In Section H we recall the Lax — Ryabenkii theorem and present the basics
of the method of auxiliary mapping. Section [§ is auxiliary and contains technical results. In Section § we use the
spectral analysis to reduce our problem to a finite-dimensional formulation. In Section [} we consider 1D case. While
the results of this section can be treated as partial cases of the results from the next section, the 1D structure allows us
to use simpler methods and understand the phenomenon of the enhanced accuracy in the long-time simulation more
clearly. In Section [ for a scheme possessing an estimate of the form ([.2) we prove the existence of an auxiliary
mapping such that (A1) and (A2) hold. In Section [§ we consider two cases when this mapping is local. In Section [[(
for these cases we present algorithms to get the optimal values P and @ in the estimate (I.2). In Section [[] we
demonstrate our method on 1D examples. In Sections [[4 and [ we construct counterexamples for the 2D transport
equation. In particular, we show that a local mapping HéP’Q) such that (A1) and (A2) hold generally does not exist.
In Conclusion we summarize primary results of the paper.

2. Problem formulation

2.1. Solution spaces
Let d € N be the space dimension. Leta;, j = 1,...,d, form a basis in R¢. We consider haj; as lattice vectors of
the mesh. Let T be the map of R? to R? that takes each 1 to

d
Tn = anaj. 2.1
j=1

If § € Z< then T'm is the offset of the block 7 from the zero block. We have (T*z); = « - a;. If a; coincide with the
vectors of the standard basis, 7" is the identity operator.

We say that f € Lo j,.(R?) is periodic with period Ny € Nifforall j = 1,...,d there holds f(r + Noa;) = f(r)
for almost all » € R%. Unless specifically stated, we will consider complex-valued functions. Denote by Lz e (R?)
the linear space of periodic f € Lg jo.(R?) equipped with the norm

112 = ﬁ / () 2aV,

where O is the parallelepiped generated by the vectors Nyay, . . ., Ngag and Ny is a period of f.
Denote HY,, (R?) = Lj e, (R N WQ‘JJOC(Rd) for g > 0 and Cger(Rd) = Lo per (RY) N C9(R?) for ¢ € NU{0}.

per

Forw € HZ, (R?) (orw € €49, (R%),qe NU{0},» = 0,...,q, denote

per per

glml

= o @2

r! 2 r! 2
Vel = 3 DTl Vel = 3 L max D™l

|m|=r |m|=r

3
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Here m = (mq,...,mq) is a multiindex: m; € NU {0}, [m| = m; + ... + mg, m! = my!...mg!. Obviously,
IV fIl < [[V"flloo- Denote ™ = z{"* ...z} for v = (x1,...,24). The notation I < mm means that for each
j=1,...,dthere holds [; < m;.

Each w € Ly - (R?) with a period Ny can be represented by the Fourier series

2
w=Y" @exp (z]\?k : T_1r> : (2.3)
0

keZd

converging in Lo e (R?). If we consider w as a function with period 2N, the coefficients 1y, will change. To avoid

this, we introduce
A={a eR?: T*a/m € Q%}.

Denoting o = 27(T™*) "'k /Ny we rewrite (2.3) as

w = Z We exp (- 7). (2.4)
acA

Here and below in such sums we imply that there exists a common multiple of denominators of all T*«/(27) such
that we # 0. For w € La e (R?), Parseval’s identity ||w]|> = 3 |wq|? is valid. The correspondence between
w € Lg’per(Rd) and its Fourier coefficients we, in (2.4) establishes a bijective isometry between Lg’per(Rd) and a
dense subspace of I5(A, C). The set A is the frequency domain of this Fourier transform.
Forw € HY,.(R%),q€R,q>0,denote
V3wl = > wal*|ecf. 25)

acA

For ¢ € NU {0} the definitions (2.2) and (R.9) coincide (see Lemma in Appendix). We equip H,, (R%), ¢ € R,
q>0and CZ,,.(R%), ¢ € NU {0} with the families of norms

1FI2, 0 = IFIZ + 2T FI2, UF ooy = D% + B2V £

Let Q be the unit sphere in R%. Denote by ) a set of vectors e € € such that \T™e € Q¢ for some A > 0. We
say that f € La o.(R?) has a direction e € Q and write f € La joc.(R?) if there exists a function g € Lo joc(R)
such that f(r) = g(r - e) for almost all » € R?. For e € 2 we denote H%,,. ,(R?) = Lg jpc.(R?) N HI, (R?),

per,e per

ClroRY) = Ly toc.e(R?) N CL,, (R?). The spaces HY,, .(R?) and CZ,, .(R?) contain nonconstant functions (see
Lemma [A.2 in Appendix).

2.2. Mesh function spaces
Let MY be a finite set of the degrees of freedom (DOFs) at a mesh block and M = Z¢ x M9 be the general set

of DOFs. For f € CM by f,, € CM’ we denote a part of the vector f in the block ) € Z?. We shall also call f,, the
block component of f at 1. The set of sequences with period N is

V. ={feC” :vn,¢€Z foine=fn}

The set of periodic sequences Vyer = U Vp];’, is equipped with the scalar product defined for f € ijgﬁf ), g E ijgr(g )
NeN

as

1

(F9)=5xa 2 (nom) N=NN().
n=(0,...,N—1)d

Here (f,, gy) is any scalar product on CM °. If the function f has a period N (f) then it has the period nN(f) for all

n € N, but the substitution n.N () for N(f) does not change the value of the scalar product. We equip C * and Vier
with the norms induced by these scalar products: || f,[|? = (fn, fn); [|fII> = (f, f). The space V., is incomplete

(see Corollary b.3).



85

90

95

100

2.3. The equation and the schemes

In this paper we consider the initial value problem for the model linear transport equation

%+w~V1}:0, r e R4, (2.6)
v(0,7) = vo(T) € Lo per (RY). (2.7)

The transport velocity w is constant in space and time.
To approximate (R.6) consider semi-discrete schemes of the form

dum¢ 1 d MO
>z () + D Letnie(t) =0, neZl, u,eC™, (2.8)
CES ¢eS

where S C Z< is a finite set (the stencil of the scheme), Z¢ and L¢ are real-valued matrices. For ¢ ¢ S put
Z¢=1L¢=0.Let Z:CM — CMand L : CM — CM take each u to Zu and Lu such that

(Zu)y = Z Zeunye,  (Lu)y = Z Leunqe. (2.9)
¢eS ¢eS

With this notation, (2.8) is equivalent to

du 1
Z— + —-Lu=0. 2.10
7 + 5 u=20 ( )
Obviously, Z V.Y, C VN, LVY, C VN  hence, Z Vyer € Vpers L Vper € Vper. The operators L and Z are bounded
on Vyer with
1ZI <Y 02l I < Y L,

4= ¢es
where the operator norms on the LHS are induced by the norm on V)., and the operator norms on the RHS are induced

by the norm on CM°.

Lemma 2.1. The operator Z : Ve, — Viper has a bounded inverse if and only if for each N there exists an inverse
for the restriction of Z to Vp]XT, with its norm being limited by a constant independent of N.

Proof. Let Z be invertible and || Z~!|| < co. Then Ker Z = {0}. In particular, for each NN the restriction of Z to V.Y

per

has zero kernel, and is invertible. Then Z~ VX = V¥, Clearly, the norm of the restriction of Z~* to V., does not
exceed the norm of Z~! on V... To prove the reverse implication note that the norm of Z~! on V,,., is the supremum
of the norms of its restrictions to V%Y O

per:

Further in this paper we assume that for Z : V., — Ve, there exists a bounded inverse.

Lemma 2.2. For any initial data uy € Ve, the ODE system (R.10) has a unique solution u € C*([0, 00), Vper)
satisfying u(0) = ug. Besides, if ug € Vp]gr, then for any t > 0 we have u(t) € ijg,,.

Proof. Let ug € V,X.. Since Z is invertible on VY, and Z7'LV.Y, < VZ, (.10) has a solution
u € C°°([0,00), V.I¥.). The uniqueness on V., follows from the boundedness of Z 1L on Ve, O

s Vper

Since the operator Z~ 'L is bounded on Vper, and ijgr are its invariant subspaces, it generates the uniformly
continuous operator group exp(—zZ L) = Y72 (—2Z~'L)* /k!, z € C, which is analytical on the whole complex
plane and also has Vp];/r as its invariant subspaces. Since V}f;’r are finite dimensional, on these subspaces exp(—Z 1 Lz)
can be represented as the standard matrix exponential. For ug € V.. the function u(t) = exp(—Z~'Lt/h)ug solves
(.10) with the initial data u(0) = u.

A scheme (R.8) is called stable on Vper with the stability constant K, if for all k and each u € C'*°([0, 00), Vper)

satisfying (2.§) and each ¢ > 0 there holds ||u(t)|| < K|[u(0)]|. In other words, a scheme (R.8) is stable with stability

5
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Figure 2: Fragments of a mesh with spectral elements. Left: unstructured mesh. Right: translationally-invariant mesh. In the right figure, nodes
from different mesh blocks are marked by different symbols

) )

Figure 3: Block refinement of a mesh

constant K iff sup ||exp(—Z~1Lt/h)|| = sup || exp(—Z 1 Lv)| < K.

t,h>0 v>0

The most simple schemes of the form (2.8) are the finite-difference schemes on the uniform meshes. In this case

|MP°| = 1, the order of accuracy coincides with the order of the truncation error and there is no enhanced accuracy

in the long-time simulation (see Proposition P.9). The schemes of the form (2.§) such that [M°| > 1 arise in the
following situations.

* Schemes with several DOFs per cell on the uniform meshes: discontinuous Galerkin, spectral difference, active
flux etc. In this case a; are the linearly independent vectors of the mesh edges and MY is the set of the DOFs
in a cell. We assume that the ratio of the mesh steps along different directions remains constant under mesh
refinement.

* The use of spectral elements. For example, in the flux correction method [24] one needs to compute the gra-
dients at nodes of an unstructured mesh with the second order of the truncation error. It is convenient to use
an unstructured mesh obtained by refining a base mesh (see Fig. ], left). Elements of the base mesh are called
spectral elements. On each spectral element one can construct the 2-nd order interpolation polynomial based on
the nodal values of the mesh function. A gradient of the mesh function at a node can be defined as a weighted
average of the gradients of interpolation polynomials at all the spectral elements containing this node. The re-
sulting scheme on the translationally-invariant meshes has the form (2.8) with |MO| = 4 (see Fig. B, right) since
the gradients are defined differently in the nodes on the base mesh and in the nodes at edges of the spectral
elements. We say that the mesh is translationally-invariant if it is invariant with respect to the translation by the
vector of any mesh edge.

* Finite-difference or finite-volume schemes if the block refinement is used (see Fig. B). In this case the whole
mesh is uniform-block, i. e. space is tessellated by blocks of an unstructured mesh. Blocks can be indexed by
M1, ..,7Md, as if they were cells of the uniform mesh. Vectors a;, j = 1,...,d are the offsets of blocks adjacent
to a reference block and | M| is the number of DOFs per block.

» Combination of the cases mentioned above. For example, the DG method on a simplicial translationally-
invariant mesh.
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2.4. Homogeneous mappings to the mesh space

Throughout this paper we assume that 1 /A € N. In order to transform data to the mesh space (prescribe the initial
data for the difference problem etc.) one needs a mapping. Let H = HZ,,.(R?) or H = CZ,,(R?). Consider a family
of linear mappings IIj, : H — V., 1/h € N, with the following properties:

(P1) for each f,g € H such that almost everywhere g(r) = f(r + RT¢) there holds (IIx f)n+¢.e = (IIng)n,¢ for
eachn, € Z4, € € MY,

(P2) for each f, g € H such that almost everywhere g(r) = f(r/h) there holds (I1,9)y,c = (I11 f)n,¢;

(P3) if f € H is real-valued then so is 11}, f.

Each IIj, from this family we call a homogeneous mapping. By (P2), a homogeneous mapping I1; uniquely defines
the family it belongs to.

A homogeneous mapping 11;, maps a function f € H with a period Vg to a sequence I, f € V)., with the period
Ny/h. This follows directly from the definition. A homogeneous mapping IIj, of Hper(Rd) to Vper 1s bounded

if [[Inllrny == sup [T fNI/11flrny < oo. A homogeneous mapping II; of C7,,.(R%) to Ve, is bounded if

per

Ik | 00y == SUP [[TLn fII/11 f1l (7, hy00) < 00. By construction, ||I11, ||,y and || IIx |(,5,00) do not depend on h.

2.5. Local mappings to the mesh space
Consider a family of mappings I1;, 1/h € N, from Lg j,.(R%) to CM of the form

(Hnf)ne = (ne, f(AC- +Tn))) (2.11)

where 7 € Z? is the index of a mesh block, ¢ € MY is the index of a variable inside the block, e € (Wi (G))* or
(CU(G))* for some ¢ € NU {0} and a bounded domain G, II;, f is real-valued for real-valued f, and (¢, 1) # 0 for
at least one & € MP. Each I, from this family we call a local mapping and ji¢ we call its kernel. Particularly, if ¢

is a measure then .,
(I f)n.e —/f r+1Tn))due = /f(hr—l—thjaj)dug.
G J=1

If pe € Lo (G), then IT;, maps Lg’loc(Rd) to CM. For example, the standard Lo-projection onto a space of functions,
which are polynomials on each mesh cell, can be represented as a local mapping. If e € (W3 (G))* for some
q € N U {0}, then IT;, maps H}! (R?) to CM. If ¢ € (C9(G))* for some ¢ € N U {0}, then II;, maps C?(R?) to

CM. An example is the pointwise mapping used in finite-difference schemes, namely, (I, f),.¢ = f(h(pe + T7))
(i. e. pe = 0(r — p¢)) where p; are collocation points.

Lemma 2.3. 4 local mapping 11;, with pe € (W3 (G))* is a bounded homogeneous mapping of per(Rd) 10 Vper.
4 local mapping 11 with e € (C9(Q))* is a bounded homogeneous mapping of C{..,. (RY) to Ve

Proof. Let Ny be a period of f. Then for each n, ¢ € Z%, ¢ € M there holds
(I f)ntenone = (e f (R (- +Tn) + NoTC)) = (pe, f (h (- +Tm))) = (Unf)n.e,

and the same for II},. Thus II; H! ) C Viper, 0,04, (RY) C Vper The properties (P1) and (P2) are obvious.

per( per

The boundedness of IT), is obvious; the proof of the boundedness of I}, is in Appendix (see Proposition [A.4). O

In this paper we will use mappings H(p 9 and H;l s 9 p,q € N, given by

(Hﬁf”q)f) (Mpf)n+ Y. h™let™ (p,D™f), (2.12)
p<|m|<q
(p.9) N () omf
(17 f)17 = (th)n+mz::ph ¢l (7’ e m>n, (2.13)

7
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where I1j, and P}, are some local mappings, the kernel ji¢ of P, satisfies {fi¢, 1) # 0 for each £ € MY, (™) and dm)

are diagonal square real-valued matrices of size | M°|, and e is a unit vector. It is easy to see that H%p D and TP are

h,e
local mappings. If the kernels of IT;, and P, belong to Ly (G) then TI”*?) maps W3 oe(R?) to CM and HY,, (R?) to

loc per

Viyer. If the kernels of IT;, and Py, belong to (C(G))* then T17% maps C7(R%) to C and C4,, (R?) to V.

per

2.6. The truncation error and the solution error

Suppose IT maps a subspace of H} (R?) to CM. The truncation error on the function f in the sense of IT is the
vector ey, (f, IT) € CM defined as
1
en(f,T0) = ~ZTh(w - V) + L LTI}, (2.14)

Let IIj, be a homogeneous mapping of f € H}}
and each h there holds ¢, (f,II),) € V,§é¥°/h).

(RY) (or CY,,.(R%)) to Vper. Then for each f with a period No

er

Definition 1. We say that the scheme possesses the truncation error of order P4 in the sense of 11, if for each o € A
there holds e, (e’ ™, TI,)|| < C(a)h"4. We say that the scheme possesses the truncation error of order P, in the
sense of II;, on the direction e € (2 if for each o € R such that ce € A there holds ||e;, (¢!, I1},) || < C(a)h4.
We say that the optimal order of the truncation error is P4 if the scheme possesses the truncation error of order Py
and does not possess the truncation error of order P4 + ¢ for each § > 0.

Later (see Corollary p.21)) we will show that for a local mapping IT;, with kernel 1 € (W3 (G))* the scheme
possesses the truncation error of order P4 € N iff for some cq, co > 0 there holds

llen (vo, )| < exl| VP4 gl |RF4 4 e[ Pasad gy | praxtPaal,

for each vy € H,r,r?ﬁ{PA’q}H(Rd). A similar property holds if u € (C1(G))*.

Definition 2. Suppose IT maps H,,,.(R%) or CJ,,.(R?) to Ve, for some 7. The solution error in the sense of IT with
the initial data v is the vector

en(t,vo, II) = u(t) — Iv(t, - ) € Vier, (2.15)
where u(t) = exp(—Z 'Lt/h)Tv, is the solution of (R.10) with the initial data w(0) = TIv,, and

v(t,r) = vo(r — wt).

If 1T}, is a local mapping with e € (W3 (G))* (or (C%(G))*), then for each f € HS,.(R?) (or CZ,,.(R?)) with a
period Ny and each h and ¢ > 0 there holds e, (¢, f,1I;) € V;g"/h). Note that by definition we have &5,(0, vg, IT) = 0,

so0 in contrast to the concepts conventional in the finite-element analysis we do not consider the error of the initial data
mapping to be a part of the solution error.

2.7. Long-time simulation accuracy
We introduce two different definitions of the scheme order in the long-time simulation.

Definition 3. Consider a scheme of the form (@) and a homogeneous mapping II;, of H C Lo per (Rd) to Vper. Let
P, Q satisfy 0 < P < @ < oo. Suppose for each vy € H there exist non-negative constants c¢; (vp), c2(vg) such that
for each h, and each ¢ > 0 the scheme possesses the error estimate

llen(t,vo, II)|| < e1(vo)ht + ca(vo)th® (2.16)

(here we assume h>° = 0). Then we say that in the sense of II;, on H the scheme possesses the formal order of
accuracy P and the long-time simulation order Q) in the weak sense.
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Definition 4. Let H be one of the following spaces: HZ (R?) for some R > 0, CZ

. 7t (R?) for some R € NU {0},
HE, (R?) for some R > 0 and e € Q, CR, o(R?) for some R € NU {0} and e € Q. Consider a scheme of the

form (2.8) and a homogeneous mapping IT;, with 7 in the domain of IT;,.

i. Let P and @ be real numbers satisfying 0 < P < @ < oo and @ + 1 < R. We say that the scheme possesses
the formal order of accuracy P and the long-time simulation order @ in the sense of II;, on H if for each initial data
vy € H, each h, and each t > 0 the scheme possesses the error estimate

llen (t, vo, ILy) || < CLAT |V vl + Coth@|| VO || + C3h ||V g | (2.17)

where C7, Cy, C3 are non-negative constants independent of vy, h, and t. Here *x = oo for H = C’gfw(Rd) or
CR .(R?) and dropped otherwisel.

ii. Let P be a real number satisfying 0 < P < R. We say that the scheme possesses the formal order of accuracy P
and the long-time simulation order () = oo in the sense of II;, on H if for each initial data vy € H, each h, and each

t > 0 the scheme possesses the error estimate
len(t, vo, )| < CLRE |V E vl + CshE ||V E v, ||, (2.18)

with nonnegative constants C; and C'5 independent of vy, h, and ¢, and * treated as in ().
iii. If for each initial data vy € H there holds (¢, vg, IT5,) = 0 then we say that the scheme possesses the formal
order of accuracy P = oo and the long-time simulation order () = oo on H.

Obviously, if the scheme possesses the formal order of accuracy P and the long-time simulation order () then it
possesses the same orders in the weak sense. Unless specifically stated, speaking about the formal order of accuracy
and the long-time simulation order we imply the use of Definition [.

For y € R denote by |y] the largest integer that is less than or equal to y and by [y] the lowest integer that is
greater than or equal to . The formal order of accuracy and the long-time simulation order given by Definition f have
the following properties, which are intuintively clear.

Lemma 24. Let 11}, be a local mapping with pe € (W3 (G))* (or (C*(G))*). Let the scheme (R.8) be stable
and possess the formal order of accuracy P and the long-time simulation order Q on H',,(R?) (or CIEQ(Rd)),

per
r 2 max{Q + 1,s} (or r = max{P, s} if Q = o). Then for each p and q such that0 < p < P andp < q < Q the
scheme possesses the formal order p and the long-time simulation order q on H',,.(RY) (or C,EQ« (RY). If g < Q = <

per
we additionally assume q < r — 1. The same holds for the definition in the weak sense.

In the sense of Definition [§ this is obvious; in the sense of Definition [ this will be proved below (see Corol-
lary b.18). So we can say that the scheme possesses the order of accuracy P, 0 < P < oo, if the scheme possesses

the formal order of accuracy P and the long-time simulation order P on H,,. (R?) (or C';[Zl (R?)) with r > P.

Lemma 2.5. Let P > 0, Q > P, R > Q + 1. Let 11}, be a homogeneous mapping oszf/eT(Rd). Letr > R. The
scheme (R.8) possesses the formal order P and the long-time simulation order Q) on err (R9) iff it possesses these
orders on H”, (R?).

per

Lemma2.6. Let P >0,Q > P, R>Q+1, Re€N. Let I, be a local mapping with i € (WE(Q))*. The scheme
(2.8) possesses the formal order P and the long-time simulation order Q on H fér (R?) iff it possesses the formal order
P and the long-time simulation order () on Cfer (R9).

These lemmas follow from Theorem b.17. Thus we will drop the class of functions on which the scheme possesses
these orders, unless this leads to ambiguity.

Definitions B and { introduce the concepts of the formal order and the long-time simulation order simultaneously.
Now we introduce the concept of the optimal values in such a way that one should first define the optimal value of the
formal order of accuracy and then find the optimal value of the long-time simulation order.

'If P,Q € N, then ||V vg|| and || V@ vg]| can be replaced by ||V P vo || and | V@ F v ]|, which leads to an equivalent definition.

9
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Definition 5. Let IT;, be a homogeneous mapping. Let the scheme (R.§) possess the formal order P and the long-time
simulation order @ in the sense of I, on H[! (RY) (or H, ,(R?)). If for each P’ > P, Q" > P’ and for each
P’ = P, Q" > (@ the scheme does not possess the formal order P’ and the long-time simulation order @)’ in the
sense of ITj, on any H”, (R%) (or H 4 R?)), then we call the values P and @ optimal. The optimal values for

per
homogeneous mappings of CgeT(Rd) and the optimal values in the weak sense are defined in the same way.

er,e(

3. Main results

Forn € N, let {2, be a set of vectors {e, € L k=1,..., Cﬁ_ﬁl_l} such that {(ey, - 7)™} form a basis in the space
of homogeneous polynomials of order n. For the existence of this set see Lemma [A.4. Denote L(0) = > ¢ Le.

Theorem 1. Consider a scheme of the form (R.8), stable with a constant K, and local mappings 115, Py, with ker-
nels pe, fie € (W3 (G))* (or (C1(G))*). Let Pa and P be the optimal orders of the truncation error and accuracy,
correspondingly, in the sense of 11j,. Let 3z = minge ppo [{fie, 1)| > 0 and R = max{q, P} + 1. Then the following
holds.

1. P4 and P are integers.

2. Either P= Py or P = P4 + 1.

3. If P = Py + 1 then there exist real-valued diagonal matrices €™, |m| = P, such that the scheme possesses
the truncation error of order P in the sense OngP’P) given by (212). Moreover, ||€™)|| < 6C,, where C| is
the constant in estimate (R.17) and ) depends only on K, 3, P, |M°

4. If P = Py then there exists no set of matrices {€™) |m| = Pa + 1}, such that the scheme possesses the
truncation error of order Py + 1 in the sense of H;LPAH’PAH) given by (2.12).

5. If L(0) = 0 then P = Pa.

6. Ifthe scheme possesses the formal order of accuracy Pa+1on HE __(R?) (or C’If‘;r’e (R%)) for each e € QpAH,

per,e

then it possesses the formal order of accuracy P = Pa + 1 on HE (R?) (or C’ﬁr(Rd)).

per

0
, and the norm on CM"

7. P coincides with the optimal order of accuracy in the weak sense.

Theorem 2. Let I1j, be a local mapping with e € (W4 (G))* or (C9(G))*. Let P,Q > 0, r > max{P,q}, and
R = max{Q + 1,7}. Let the scheme (.§) be stable and possess the error estimate (2.17) on H;ﬁr (R?) (or ng] (R%)).
Then there exists a homogeneous mapping I, : L per (R%) — Vper such that

Inf = fll S CAPIVT I+ RTIVTFIL, - llen(f )l < CROYIVEH S|

for each hoand f € HI (R?) (or C’,[ﬁW (R%)), where C does not depend on h and f, and || - ||« means either || - ||
or || - || depending on the case.

Note that the mapping I, given by this theorem is generally not local.
In order to formulate the third result, we need two more definitions.

Definition 6. We say that a scheme of the form (2.§) is quasi- 1D if the stencil S of the scheme belongs to a 1D subset
of Z, i. e. there exists n € Z? such that S C {mn,m € Z}.

In 1D case, each scheme is quasi-1D.

Definition 7. We say that a scheme of the form (.§) is simple if the matrix L(0) = 3 ¢ L¢ has rank [M O - 1.

Note thatif L(0) has rank | M°| then the scheme does not preserve a constant solution, thus its order of the truncation
error is equal to P4 = —1, then P < 0 by Theorem [I] i. e. there is no solution convergence.

Theorem 3. Let II;, and Pi, be local mappings with kernels e, jie € (W3 (G))* (or (C"(G))*). Let
% = mingeppo |(fig, 1)| > 0. Let the scheme (2.8) be 1) stable and 2) either quasi-1D or simple. Let Py, P, and

10
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Table 1: Relations between the definitions

The scheme possesses For each e € €, the scheme possesses
the formal order of accuracy P the formal order of accuracy P
and the long-time simulation order ) Corof and the long-time simulation order )
on H 1 (R?) Y on HE L (R?), the coefficients of the estimate
being bounded in e € Q
U g (sect. [2.9) i)

The scheme possesses
the formal order of accuracy P
and the long-time simulation order )
on H21(R?) in the weak sense

if the scheme is “simple” or quasi-1D
(Theorem PBJ);
if P = Q (Theorem [I])

per
Y |
For each e € (2, the scheme possesses For each e € (), the scheme possesses
the formal order of accuracy P — the formal order of accuracy P
and the long-time simulation order ) Proposition and the long-time simulation order )
on HZF! (RY) in the weak sense on HZ L (RY)

Q be the optimal values of the order of the truncation error, the formal order of accuracy, and the long-time simula-
tion order, correspondingly. Then the following holds.
1. Qe NU{0}.
2. There exist real-valued diagonal matrices ¢m pg |m| < Q, such that the scheme possesses the truncation
error of order Q) in the sense of HgP’Q) given by (2.12).
3. Let p,q > 0. If for each e € flm the scheme possesses the formal order of accuracy p and the long-time

simulation order q on HY __(R?) (or C’,[gle(Rd)), where R > max{r,p,q + 1}, then it possesses the formal

per,e
order of accuracy p and the long-time simulation order q on HX., (R%) (or C,[fﬂ (R%)). Particularly, if p = P,
then @ > q.
4. @ coincides with the optimal value of the long-time simulation order in the weak sense.
5. If the scheme is simple, then either Q > P = Py +10r Q = P = Pa.

If the scheme is neither quasi-1D nor simple, then the statements 1—4 of Theorem [§ may be wrong, see counter-
examples to the statements 1 and 2 in Section [12.4, to the statement 3 in Sections and [12.3, to the statement 4 in
Section [12.1]. If the scheme is not simple, then the statement 5 of Theorem § may also be wrong even in 1D case, see
Section [[1.3.

The optimal value of the formal order of accuracy is the same for Definitions § and [, but this generally does not
hold for the long-time simulation order. Relations between the definitions are shown in Table [I]. For each implication,
areference to a corresponding statement is given unless it is obvious. For an implication that does not hold, a reference
to a counter-example is given.

Basing on Theorems [f and | we construct algorithms giving the optimal values of the formal order of accuracy
(for each stable scheme) and of the long-time simulation order (for simple and quasi-1D schemes), see Section [L0.
Theorem P is used below to establish Theorem [B.3 which states that a scheme possesses the formal order of accuracy
P and the long-time simulation order @ if and only if a specific function is bounded at zero.

4. The method of auxiliary mapping

Theorem 4.1 (Lax — Ryabenkii). Let I1j, be a map ofHIf?J1 (RY) to Viper. Let K be the stability constant of the scheme
©.8). Let for each f € HZ Y (R?) there hold

per
le(£, 1) || < ChQ|VEHL£]. 4.1
11
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Then for each vg there holds
len(t, vo, In) || < CE | Z7H|[[ V9 g . (4.2)

Proof. Put v(t,r) = vo(r — wt). Taking the time derivative of (2.13), multiplying by Z and using (2.10) we get
d 1
Z@{:‘h(t,vo,nh) = 7EL’U,(15) + ZHh(w . V)’U(t, . ) =
1
= 7EL (Eh(t, ’U(),Hh) + Hhv(t, . )) + ZHh(w . V)’U(t, . )

By (R.14) this is equivalent to

d 1
Z%Eh(t,vo,n}ﬂ + ELEh(t,’Uo,Hh) = —eh(v(t, . ),Hh).

Since 5, (0, vo, IT;,) = 0 (see (2.13)),

t
t _
en(t,vo, I}) = —/exp <—Z‘1L hT) Z e (v(r, - ), 10,) dr.

By stability || exp(—vZ~'L)|| < K for all v > 0, so using (4.1]) we have

llen(t, vo, In)|| < Kt maxt ||Z71€h(1)(7', ), R)|| < C’KthQHZ*lH - max ||VQ+11)(T, -

0<7< TR
It remains to note that || VO (7, - )|| = [|[V@H ]| for all 7. O
The following proposition describes the method of auxiliary mapping, which is the cornerstone of this paper.

Proposition 4.2. Consider a stable scheme (2.8) and homogeneous mappings 11, and 1, Jfrom Lo per (RY) to Vier-
Suppose for some P and Q for each f € Hper PO there holds

(T, = Ta) fIl < CLpP IV FIl - and - le(f, 1) || < Coh® Ve f.
Then the scheme possesses the formal order of accuracy P and the long-time simulation order Q) in the sense of 11,

Proof. Letu(t) and @(t) be the solutions of (2.8) with the initial data 1.(0) = II,vo and @(0) = IIjvg, correspondingly.
Denote by v the exact solution v(t, ) = vg(r — wt). Then

llen (t, vo, )| = [lu(t) = ho(t, - )| <

<) = a)l| + llat) — My, )| + [Tyt -) = yo(t, -)l.

By stability there holds ~
[u(t) — a(®)]] < K|u(0) = a(0)]| = K[[xvo — Mavoll,

where K is the stability constant of the scheme. Note that ||v(t, - )|| = ||vg||. Then we get
llen (¢, vo, L) < llen(t, vo, Ta) || + (K + 1)Cih” [V g . (4.3)
By Theorem [.1 we get the desired estimate (2.17) or (2.18). O

12
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5. Preliminaries

5.1. Some properties of the functional spaces

Recall that for n € N, by ), we denote a set of vectors {ex € 502, k=1,.. Cd 1 } such that the polynomials
(eg - 7)™ form a basis in the space of homogeneous polynomials of order n (see Lemma ).

Lemma 5.1. Let m be a multiindex, Q‘m‘ = {ex}. Then there exists ’yk JeER k=1,. C\(ir;\+d 1» such that
Clonlta-1
D™ — Z A (), 7). (5.1)

Proof. Since the polynomials (e, - )™ form a basis in the space of homogeneous polynomials of order n, there exists
; (m)
a set of coefficients ;" such that

d—1
Clmita—1

P Y A (e ),
k=1

Since this is a polynomial identity, it holds with the substitution of V for r. Thus we get (5.1)). O

Lemma 5.2. Let G be a neighborhood of zero in R%, f € CP(G), p € N and |f(x)| < ctlz|P in G. Then
| D™ f(0)| < cyep for each |m| = p, where ¢, does not depend on f.

Proof. For the 1D case, this follows from the Taylor expansion with remainder term in Peano form with ¢, = p!. Thus
for each direction e € Q we have |(e - V)P f| < ¢sp!, and it remains to use Lemma [.1. O

Lemma 5.3. Let f(¢) be a holomorphic function at ¢ = 0, and n,m € N U {0}, m > n. Suppose for each
e € O, there exists ce > 0 such that | f(e)| < ce|tp|" ' in a neighborhood of 1) = 0. Then there exists ¢ such that
|f(p)| < &l@d|" in a neighborhood of ¢ = 0.

Proof. By LemmaA.3, the system {(e-7)", e € Qm} is complete in the space of homogeneous polynomials of order
n. Let g(e, @) = 0" f/0e"(¢). As a function of e, g is a homogeneous polynomial of order n. By assumption

g(e,0) = 0 for e € Q,,,. So we have g(e,0) = 0 for each e € Q. By Lemma B.1 for each m, |m| = n, we have
D™ f(¢) = 0. Then the statement of the Lemma is obvious. O

Lemma 5.4. For eachp < m < q and each w € HgET(Rd) there holds
R¥™|V™w||? < h?P||VPw]||? + h%||V2%w]|2. (5.2)
Proof. For p = m = ¢ this is obvious so assume ¢ > p. Let wq be Fourier coefficients of w. By (2.3),

RV ) = ) wal*[hel*™ <

acA
< X fual (L2 inafr + P2 pa) < 0|9l + 12,
acA 4=
where we have used the Young inequality for products. O
Lemma 5.5. For each p,q € NU {0} there exists C(p, q) such that for eachm = p,...,qand f € per(Rd) there

holds
RV flloe < Clp, @) (WIVP flloo + RV flloo) -

13
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Proof. By the coordinate transformation we can assume without loss that h = 1. For 1D case this follows from the
Landau — Kolmogorov inequality [25]. For each e € (2 this yields

omf ) o1f
dem || e ded o/
Then by Lemma .1 we have
me2 m! m (2
IVl = ymax|D™ [ < y = !’r sup fl 7| <
ml=m ml=m %0
m! ., |l \?_ A 2
< — P q
< ¥ oo (52]_+152].) <coaawmi.rivir
where v = ‘ max 3 |7,im)| and 'y,gm) are given by Lemma B.1]. O
m|=m

Lemma 5.6. Let 0 < r < q < oo. Then for each f € HY,.(RY) there holds ||f||ny < 2/|fll(gn)-
For r,q e NU{0}, r < ¢ there exists C(p,q) such that for each f € R%) there holds || f|(rh,00) <

C(p7 q) Hf” (q,h,00)"
The proof is obvious by Lemma 6.4 and Lemma [.3.

per(

Lemma 5.7. For each vy € H'}1(R?) there holds

per

IV" (w - Vo)l < [w| [V"* voll,  hllw - Voolleny < V2Iw] [[vo]l(r41,n)-

There exists c, such that for each vy € C711(R?) there holds

per
IV (@ - Vvo)lloo < Wl [V 0glloc,  llw - Vvollirn,00) < erlw] [[00]l(r41,n,00)-

Proof. Forvg € H'F1(R?), r > 0, we have

per

IV (w - Vo)l = D fal?(w- @)l < Y [falflolflal 2 = |w]? |V .

acA acA

Then, by Lemma .4,
W2llw - Vvol[§y = Rl - Vuoll* + 22V (w - Voo) |2 < 12w ([ Vol + 22w ||V g ||* <
< wl? (lvoll* + 2022V g [1%) < 2lw]* [vollfys1,1)-

For vy € CH1(RY), r € NU {0}, we have

per

IV7(w - Veo)l3 = > 7|\Dm(w Vo) 3, =

|m|_r
! !
_ Z r. Z w Dm+l < Z ,,;/,( Z |wl| HDerl |OO) |w|2 Z Z HDerl
|m|—7 [1j=1 ®  ml=r  MI|=1 |m|—7 T =1

Denote n = m + [, then we continue the chain:

- r+1
IV (@ Vo)l <l Y Y —nDnvon;:

|n|=r+1|l|= 1l<n T+ 1)
14
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(r+1)! 2 n! (r+1)! 2

=Wl 3L T IPtel 3 gr=lel D S D el = P 9T ol
| |=r+1 ’ [1]=1,I<n ’

Then, by Lemma 5.3,

12w - Vol fn.0e) = P2 lw - Voo|[3, + 2772V (w - Vo) |13, < h?|w]?[[Vvol3, + 222 |w]?[[ V" o012, <

In|=r+1

<JwP (CA,r+ Dlvol? + (1 + C(1,r + D)2V g ) < (1+ C (L + D) |wl* [v0]fs1,0,00)-
O

5.2. Approximation of local mappings
In this subsection we prove that any local mapping can be approximated by a local mapping with a continuous
kernel.

Lemma 5.8. Let s € N. Then there exists 5*) € C*({|z| < 1}) such that the following conditions hold.
(i) ) and its derivatives up to the order s are equal to zero on x| =1,
(ii) there holds

2 (x)dx = 1; (5.3)
|e|<1
(iii) for each o = 0,...,s + 1, each f € C’ger(]Rd), and each y € R? there holds

[ #@)st + neyia - f<y>] < O(d, K|V flo. (5.4)

le|<1

Proof. Put »(%)(x) = |x|?*(1 — |x|)*g(|z|), where g(r) is a smooth function on [0, 1] such that

1
| /7’2”'1*1(1 —r)°g(r)dr =1, (5.5)
0
1
/T2s+d—1+m(1 —g(r)dr =0, m=1,....s. (5.6)
0

The factor ||>* guarantees the existence and continuity of the derivatives of »(*)(2) up to the order s at r = 0, and

the factor (1 — |x|)® makes the boundary conditions satisfied. The condition (5.3) yields (5.3). Now we show (5.4).
For o = 0 inequality (5.4) is obvious, so assume o > 0. For each y and z there holds

= 19" (y)

k! Oek
k=1

h0'|m|0'
ol

fly+hx)— fly) — hEl|® ] < [V floo

where e is the unit vector along . Hence, using (5.3) we get

[ A9 @rty+ hayia - f(y)' _ ] [A0@ U+ o) - i
/%(s)(m) = 19"f(y)

k! OeF
k=1
(all integrals are over || < 1). We claim that the first term in the right-hand size is equal to zero. Indeed, put x = r+,

<

< R* ||k | da

o hg S
IV ey [ 14 @)lde

where 0 < r < 1 and ~y varies over €). Thenfork =1,...,0 — 1 we have
1
k k
/ %(S)(m)aaj;(]?) ||k dx = /7*25(1 - r)srdflrkg(r)dr/ aaj;%y)d'y,
| <1 0 Q
that is equal to zero by (5.6). Thus the inequality (5.4) is proved. 0
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Lemma 5.9. Let I1;, be a local mapping with kernel fie € (CUQ))*, g € NU{0}. Lets > q, s € N, and ) be
given by Lemma 5.8, Then the convolution Le = [ig * %) is a continuous function with support in G + B (0), and
the local mapping 11y, with kernel ¢ satisfies

I f — s f| < CR™|V" flloo

foreachr =gq,...,sandall f € Rd), where C' depends only on d, s, [i¢, and the norm on cM’,

per(

Proof. For each & € MY, each h, and 7 € Z% we have

(I f)me = (Mnf)ne = (e — pe, f(A(- +Tn))) = {fae, [f]),

where ®[f] is given by

Blf(r) = [ A@Fh(r+ Tn -+ 2))de — f(h(r +Tn).
|z <1
For |m| < ¢ we have D™®|[f] = hI™ ®[D™ f]. Then by (5.4) with o = r — |m| we get

sup [D™O[f](r)] < R™C(d, )R 1™ [V (D™ )0 < B7C(d, 5) V7 f oo
reR

Equip C'?(G) with the norm

= max max |[D™
||9||ca(c) iy eG| gl-

Then [|®[f]l[ce(c) < h"C(d, 5)[|V" f||~ and

(Unf)ne = (W flne| < [liellh"C(d; $)[V" flloo-
Then the inequality to prove is by the definition of the norm on V.. O
5.3. Properties of the matrix exponential
In this subsection we consider a matrix norm induced by a vector norm.
Lemma 5.10. If A(¢) is a holomorphic matrix function at ¢ = ¢, then so is exp(A(@)).

This follows from the representation

xp(A0) = 5 [ =g

p
where I is the identity matrix and -y is any closed contour such that all eigenvalues of A(¢y) lay inside .
Lemma 5.11. For each square matrix Y there holds

le¥ = Il < ([le¥ || + e — 1) min{L, | Y}.

Proof. If ||[Y]| > 1 then
le¥ =TI <[l (| +1 < e +e~1.

If |[Y] < 1then

vy G| <

le¥ = 1] = < IIYIIZ = = DIV < (e’ +e-DIY].
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Lemma 5.12. Suppose ||A|| < 1 and

> Ak-1
k=1
Then |[(f(A)) 7| < 4.
Proof. First,
> Ak-1 > 11Allk—1 > 1
R i B e D D P
k=2 k=2 k=2
Hence 1 1
FANH =1+ (fFA) —I)7Y < < < 4.
G = 10+ ) = D) < T =7 < T
O
Lemma 5.13. Let A be non-degenerate and ||A|| < 1. Then ||(e?* — I)71|| < 4]|A71L|.
Proof. For f(A) given by (5.7) we have e* — I = Af(A). Then
e = DU < ) THHATH < 4] A7
0

5.4. Transformation of a matrix to a block-diagonal form

Let C™*™ be the space of complex matrices of size n. Denote by .A(C¢, C"*™) the set of functions from C¢ to
C™*™ holomorphic at ¢ = 0. Let o(Y") be the spectrum of a matrix Y and »(Y") be its condition number, i. e.
#(Y) = Y] Y1,

To proceed, we need to recall some facts from the perturbation theory.

Lemma 5.14 ([26], §1.5.3). Let A € C"*™, X € 0(A). Let 0 < p < dist(\,0(A) \ {A}) (the distance to the empty
set is assumed to be +00). Then the matrix

Py(A) = %m 7{ (21 — A)"dz (5.8)
|z=Al=p

is a projection onto the algebraic eigenspace corresponding to \. Besides, for A, ju € o(A) there holds Py(A)P,(A) =
uPr(A).

Lemma 5.15 ([26], §2.5.1). Let A(¢) € A(C?,C"*™). Then the eigenvalues \j(¢$), j = 1,...,n, can be reordered
so that \j(¢) — A;(0) as ¢ — 0.

For A(¢) € A(C?,C"*")and A € o(A(0)) the set of eigenvalues \; (¢) of the matrix A(¢) such that \;(¢p) — A
is referred to as A\-group, and the sum of the corresponding algebraic eigenspaces is the fotal eigenspace of the A\-group.
The operator Py(¢) = _ Py, (¢)(A(®)), where the sum is over the A\-group, is the total eigenprojection of the \-
group. It is a projection onto the total eigenspace of the A-group (see [2€], §2.2.1). The sum of all total eigenprojections
is the identity operator and Py (¢)P,(¢) = dr.Pr(®).

Lemma 5.16. Let A(p) € A(C4, C" ") and A € o(A(0)). Then Px(¢) € A(CE, C™*™).

Proof. Let p = 1dist(\,o(A(0)) \ {\}). By continuity in a neighborhood of ¢ = 0 there holds |A;(¢) — A| < p for
each \;(¢) belonging to the A-group corresponding to A and |\;(¢) —A| > p otherwise. Thus the total eigenprojection
of this A\-group is

PA@) = 5r; (1 Alg) d (59)
[z=Al=p

Since the integrand is analytical with respect to ¢ and z over the integral path, we have Py (¢) € A(C%, C"*"). O
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Lemma 5.17. For any n € N, K > 1 there exists C = C'(n, K) such that for any B € C"*" satisfying

sup ||| < K there holds
v>0

|/\(B)|max P A ‘)‘(B)|max
BBl < P S OB

where |A(B)|max and |A(B)|min are the maximal and minimal module of the eigenvalues of B.

Proof. The first inequality follows from the fact that any norm of the matrix induced by a vector norm is greater than
or equal to its spectral radius. The proof of the second inequality is based on the Kreiss matrix theorem [27], see
Lemma 6 and Lemma 8 in [28]. O

Theorem 5.18 ([28]). Foranyn € N, K > 1 there exists C = C(n, K) such that for any B € C"*™ satisfying
sup ||e”B|| < K there exists a matrix U such that »(U) < C, the matrix M = U~ BU is block-diagonal, and each

v>0

block M; of M satisfies either M; = 0 or »(M;) < C.

Without loss we assume the spectra of M; do not intersect. Indeed, if two blocks M; have common eigenvalues
then by Lemma they can be united into one block with the condition number not greater than the product of the
conditional numbers of the original blocks multiplied by C.

Theorem 5.19. Let A € A(C? C"") and sup ||exp(vA(0))|| < K. Let A(0) have zero eigenvalue of al-
v>0

gebraic multiplicity no. Then in a neighborhood of ¢ = 0 there holds A(¢p) = S(p)M(p)S~1(p) where
S,M,S~! e A(C4,Cn*m),

MM (gp) ... 0 0
M(¢) = (:) M(":L)(qb) (?) , (5.10)
0 0 MO ()

MO (@) is a ng x ng-matrix, MO (0) = 0, (M) (0)) < & for j # 0,
onn and K only.

S0)|| <6, IS70)|| < 6, and § depends

Proof. By Theorem there exists a matrix Y such that A(0) = Y BY ~1, where B is a block-diagonal matrix with
blocks B; of size nj, #(Y) < C(n, K), and »(B;) < C(n, K). Denote B(¢) =Y 1 A(¢)Y.

Denote by P;(¢) the sum of the total eigenprojections of the A-groups for the matrix function B(¢) corresponding
to 0(B;). By construction

0 0 0
Pi(0)=] 0 I 0|,
0 ... 0 ... 0

where [ is the identity matrix of size n; and its position corresponds to the position of 5; in the matrix 5. By continuity
the submatrix of P;(¢) taking the same position as B; is non-degenerate in a neighborhood of ¢ = 0. Therefore, for
a given j the columns of P;(¢) corresponding to the block B; form a basis in the sum of algebraic eigenspaces of
B(¢) corresponding to o (B;).

Introduce the matrix function S(¢) composed from these basis columns of all P;j(¢). By construction the matrix
M(¢p) = S~ (¢p) B(¢)S(¢p) has the block-diagonal form (5.10), where M) (0) = B; and S(0) = I. The matrix
S'(qb) is analytical in a neighborhood of ¢ = 0 since all of its columns are analytical by Lemma B.16.

By continuity det S(¢) # 0 in a neighborhood of ¢» = 0. The elements of S~!(¢) are products of elements of
S(¢) divided by det S(¢), so S~1(¢p) is also holomorphic. Hence so is M (¢). Thus we get representation (5.10)
with S(¢) = Y'S(¢). O
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6. Spectral analysis

The purpose of this section is to show that the error estimate for an arbitrary smooth solution is equivalent to the
error estimate for a single complex exponent. This allows us to reduce our further analysis to a single wave and thus
to a finite-dimensional analysis.

6.1. The basics

Recall that A = {a € R? : T*a/7 € Q?}. For 3 > O denote As = {¢p € A : T*¢ € [-5,8)?}. Let
I2(Ax,CM°) be the space of maps w of A, to CM” such that > llwgl*> < oo with the scalar product (w, w’) =
> o(We,wy). Let Ve C l2(Axr, (CMO) be the space of maps w such that w(¢) = 0 for all but a finite number ¢ € A.

Clearly I5 (A, CM") is a Hilbert space, and Vj is its dense subspace. Also denote U = (T*)~L.
Let F : Ve, — Vp be the mapping taking each f € V., to

per

k
FI@) =g Yo Jnewl-ig-Tn) for ¢=2nUr, keZ'n[-N/2N/2)  (61)
ne{0,...,N—1}4

and F[f](¢) = 0 otherwise. Note that f € VY, also belongs to f € V2 for each n € N, but this does not affect the

per

value F'[f]. Itis easy to see that F is a linear mapping. This mapping is invertible. Indeed, for w € Vi let F~1[w] be
the sequence with components

(F~ wln = > w(®) exp(igp- ). (62)
PEAL
Obviously, F~'[w] € V,}Y,., where N is the product of all denominators of ¢ such that w(¢) # 0 (by definition, the
number of such ¢ is finite). It is easy to see that F'~[F[f]] = f and F[F~![w]] = w.

Denote
1 1, 3ccZ: ¢ =¢y+2nUc;

_ , 1= Po; mod  _ _
5¢1,¢2 = { 0, otherwise; 6¢1,¢2 - Ez:i 5¢1’¢2+2ﬂUC B 0, otherwise.
cel”

Lemma 6.1. If f € Vj,er has components f;, = yexp(i¢ - T'n) with some ¢ € A, y € CM’, then
FIfU(¢) = yb% (6.3)
for each @' € A,.
The proof is obvious.
Lemma 6.2. For f, g € Ve, there holds (F[f], Fg]) = (f, g) and thus F is an isometry: | F[f]|| = |||
Proof. Let f € fog;, g € VIV2 then f,g € VN with N = N; Ny. We have

per> per

(Flf], Flgl) = > (Ff12nUk/N), Flg](2rUk/N)) =

k€ZIN[—N/2,N/2)d

- ﬁ Z Z (fn>9¢) Z dexp (Qwik'(?v_C)> )

n€f{0,...,N—1}4 ¢€{0,...,N—1}4 keZIN[—N/2,N/2)

The sum over k is equal to zero for n # ¢ and to N¢ for n = ¢, thus

FULFlO) =5z Do (Fngn) =(f,9).

ne(0,...,N—1)d
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Corollary 6.3. The space Vye, is incomplete.
Proof. Since F is a bijective isometry from V., to Vi, and the latter is incomplete, so is the former. O
For each ¢ € C? put by definition

Z(¢)= >, Znexpli¢-Tn), L(¢)= Y Lyexp(i¢p-Tn). (6.4)

nesScze nesczd
Functions Z(¢) and L(¢) are periodic with the periodic cell (7)™ [—x, 7)<
Lemma 6.4. Let Z and L be given by (2.9). Then for f € Vye, there holds

F(Zfl(¢) = Z(9)F(f1(d), FILfI(P) = L(P)F[f](¢), (6.5)
Flexp(=Z7"Lt/n) f](¢) = exp(—=Z " (¢) L(d)t/ W) F[f)(). (6.6)

Proof. By linearity it is enough to check this for f,, = exp(i¢ - T'n)y, with some ¢ € A,,y € CM ° Then

(Zf)n =Y Zcexpligp- T(n +¢))y = exp(icp - Tn) Z(9)y,

¢eS

so F[Zf|(¢) = Z(¢)ydp.er = Z(¢)F[f](¢'). The proof of the second identity is similar. To prove (6.6), note that
u(t) = exp(—Z~'Lt/h)f is the solution of (.10) with the initial data f. Applying F to (2.10) and using (6.5) we
get

2(9) S Flu(d](9) + 3 L@ Fu()(#) =0, Flu(0))(9) = FIf(6).

Solving this equation we get (6.6). O

6.2. Mappings to the mesh space

For ¢ € R? there holds '®" € Ly ,..(R?) iff ¢ € A. For a homogeneous mapping 11, and ¢ € A put by
definition

(g, IIy) = (7)), (6.7)

where the subscript 0 means the block component at 77 = 0. If ITj, is a local mapping, then (6.7) defines v(¢, IT},) for
each ¢ € C%, and v(¢, I1},) is a holomorphic function.

Lemma 6.5. Let ¢, € A, ¢’ € A, and 11}, be a homogeneous mapping. Then for o = ¢/h, 3 = 1 /h there holds
et e Vper and ,
Flle'™)(¢) = 035 v(¢,11n), (6.8)
(Lne™™ ™, 1ye™) = 3%, (v(¢, 1n), v(3p, I11)). (6.9)
Proof. By definition,
(Hheia'r)n — (Hheia~(r+th))0 _ eia'th(Hheiaw)o — ei¢~Tn U(¢7 Hh)-
Applying Lemma .1 we get (6.§). By Lemma .2

(I e 1,eP T = Z (Fe™m|(y'), FheP T (¢') =
P'EAL

= > TR0 (0(, 1), v(eh, T1)) = 85% (v(, 1), v(eh, T11)).
PEAL
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Lemma 6.6. Let G C A, be symmetric with respect to the origin. Let v be a map of G to CM" such that
v(—@) = v(@). Then there exists a homogeneous mapping 1}, of Lo per(R?) t0 Vyer such that v(¢) = v(¢p,111,)
Jor ¢ € G and |[I1]| < sup ().

Proof. Extend v to A, \ G by zero. Let f € La pe,(R?) have Fourier series > fo exp (ic - 7). Note that there is
acA
only finitely many nonzero f, in any bounded part of the frequency domain. Define wy € Ve by wy(@) = v() fo/n-

Let ITj, is a linear mapping of Lo ye;-(R?) to Ve, defined by II;, f = F~1[wy]. Since
T f1? = 1P wgl|? = llwrl? = [[0() fosnll® < Supllv @7 > Ifol* = supllv(®)|*[1 £,
peC A G
there holds ||IL;,|| < sup ||v(®)]|-
G

Now we check that IT, isa homogeneous mapping. To prove (P3), consider a real-valued function f € La e, (R?).
Then f_o = fo and wp(—¢) = wf( . From (6.2), F~ Hwy] is real-valued, i. e. (P3) is proved. To prove (P1) and
(P2), it is enough to consider a single exponent f(r) = exp(ica - r), & € A. Clearly,

iary _ Ju(ah)exp(iah-Tn), ahecG,
(ITpe' ™)y = {0’ oah ¢ G (6.10)
For
g(r) = f(r + hT¢) = exp(ia - KTC) f(r),
we have
(Thg)n = expliac - KTC) explihac - Tr)u(ha) = exp(iha - T(n + €)o(ha) = (T fr .
The property (P1) is proved. For g(r) = f(r/h) = exp(icx - 7/h) we have
(I1hg)n = explihx - Tr/hyo(ha/h) = (I f)y.
The property (P2) is proved.
The property v(¢, II},) = v(¢) follows directly from (6.10). O

Lemma 6.7. Let II;, and Py, be local mappings with the kernels e and fie, correspondingly, and (fi¢,1) # 0 for

each ¢ € M°. Suppose W (@) maps a neighborhood of zero in R? to CM° has q + 1 continuous derivatives at
¢ =0, satisfies W (—¢) = W (@), and ||v(¢,I1},) — W ()| = O(|@|?) as ¢ — 0, where p, q € N. Then there exist

real-valued diagonal matrices €™), p < |m| < q, such that for the mapping H(p 9 given by (R.12) there holds

v(, L) = W(¢) + O] ). (6.11)

Proof. Let the diagonal matrix €(¢) be defined in a neighborhood of ¢ = 0 by

Since (v(¢, Pr))e — (fie, 1) # 0as ¢ — 0, then in a neighborhood of ¢ = 0 the matrix function €(¢) is well-defined

and [[€(¢)[| = O(|#|"). Put L

m! jlml|

elm) — )] g - (6.13)

Taking complex conjugation from (6.12) we get

W(_¢) - v(_¢a Hh) = Q:( )U(_¢7Ph)v
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thus €(¢) = €(—¢) and

1 1
m! (—i)lml

1 1

e=0 m!(—i)lml

D™ (€(@))| D™ (€(~$))|pg = €™,

so ¢(™) is real-valued. By definition
(@, IPY) = v(p 1) + | > €™ (i)™ | v(ep, P).
p<|ml<q

Since ||€(4)|| = O(|#|?), there holds €™ = 0 whenever |m| < p. Thus the sum inside the brackets is the Taylor
polynomial of the function €(¢) of order ¢ and

0(@, IP?) = (¢, Tha) + (€() + O(|["1))u (b, Pi).
Combining this with (6.12) we get (6.11)). O

Lemma 6.8. Let I1;, and Py, be local mappings with the kernels ¢ and fie, correspondingly, and (fi¢,1) # 0 for
each € € M°. Lete € Q. Let W(v) have q + 1 continuous derivatives at 1y = 0, W(—¢) = W (1), and
lv(ve, 1) — W ()| = O(|¥|P) as v — 0, where p,q € N. Then there exist real-valued diagonal matrices e,
m=mp,...,q, such that for the mapping H;L’j;Q) given by (2.13) there holds

v(ve, IPL) = w(w) + O(|p|*H).
The proof is similar to the previous Lemma.
6.3. Truncation error, stability, and accuracy

We need the following auxiliary result.

Lemma 6.9. Let 11}, be a homogeneous mapping of HJ,, (R%) (or Clor (RY)) to Viyey. Then the operator F} defined
as E} f = hep(f,11},) is a homogeneous mapping of HiX1(RY) (or CIX1(R?)). For each t > 0 the operator F}?

per per

defined as F. f = e (t, f,113) is a homogeneous mapping of H{,,.(R?) (or CZ,,.(R%)) to Ve, Besides,

er

1F5 41000 < Il g (121l + L), 1FR g < (B + DI Tallg,n,5)
where K is the stability constant of the scheme, and x means either nothing or infinity depending on the case.

Proof. By the definitions of e, (f,I1;,) (see (2.14)) and &, (¢, f,II,) (see (R.13)) it immediately follows that the map-
pings F}} and F}? are homogeneous.
For each vy € HZ!(R?) (or C2f! (R?)) by Lemma b.7 there holds

1Fpvoll = lIhen(vo, TIn) | = ||=hZ1In(w - Vvo) + LTyvoll < (1Z[[|w] + I LIDITIA]| (g, 20l 41,00

Now let vg € HY,,.(R?) (or CZ,.(RY)), v(t,7) = vo(r — wt), and u(t) be the solution of (2-8) with the initial
data u(0) = IInve. Using ||lvoll = |Ju(t, - )| we get

[ F7voll = [len(t,v0, IIn) || = [lu(t) — Mpo(t, - )| < K|Myvoll + [Mav(t, )|l < (K + 1) [Wall (gm0 [1vollq,n,0

where we have used the stability condition. O
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By definition, put

A(p) = —Z () L(¢) + iw - @1, (6.14)
é(o,11) = A(@)v(e, 1) (6.15)
(¢, 10y) = (e”A<¢> _ I) o(, I0p). (6.16)

where T is the identity matrix of size |M°|, Z(¢) and L(¢) are given by (6.4), and v(¢, I1;) is given by (6.7).

Lemma 6.10. Let 11;, be a homogeneous mapping, o € A, ¢ = ach. Then there holds

len (e’ ™ 10| = %||Z(¢) (o, 101, (6.17)
llen(t, e )| = [[€(ep, t/h, ITy) . (6.18)

Proof. First we obtain the spectral representation of the truncation error. By (6.3) and (6.8), for ¢’ € A,

Flen(e " 1)J(¢") =~ 0)2(6') + 1 L6") ) FIe ")) =

(6.19)

= 2 Z(&) (- iah)] — 27 L(8) 038 (. Th) = —1 Z($)e(b, )T

The last identity is due to the 27U Z?-periodicity of L and Z. Using Lemma .2 we get (6.17).
Now we move to the solution error. By definition,

gh(tv eia-'r’ Hh) = u(t) - e*ia-wt Hheia.rv

where u(t) = exp(—Z 1Lt /h) I1,,e'>" (see (2.19)). By (6.9), for ¢’ € A, there holds

Ful(@) = exp (-2 (@)L | ) Fle™")(@9)

Thus by (6.8) we get

Flen(t. " I)I(6) = [exp (-2 (@)L, ) — exp (wicr-wn)| 3%, o(110),

By the 27U Z%-periodicity of Z(¢) and L(¢) we replace ¢’ by ¢ in their arguments and finally obtain
Flen(t, e’ I)](¢') = exp (—iex - wi) £(¢, /D, 11, )5%, -
Now Lemma b.2 yields (6.18). O

Lemma 6.11. Consider a scheme of the form (£.8) and a homogeneous mapping 11,. Let the error estimate (2.17)
hold. Then for ¢ € A there holds

1E(¢ v, )| < Crlg]” + Cav|p| T + Csl |, (6.20)
where Cy, Cy, Cs are the same as in (.17). If 1, is a local mapping, then (6.20) holds for each ¢ € R%.
Proof. Using (.17) for vg = ¢’*", o = ¢/h, we get
len(t, €™ 10| < C1h e + Cath®|a T + C3hf o ",

and it remains to use Lemma [6.10. If IT;, is a local mapping, then (6.20) extends to ¢ € R? by continuity. O
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Lemma 6.12. The optimal value of the order of the truncation error in the sense of a local mapping is an integer.

Proof. By Lemma this order is less by one then the order of smallness of (¢, ITj,) as ¢ tends to zero, which is
integer since €(¢, I1;) is a holomorphic function of ¢. O

Lemma 6.13. A scheme (R.9) is stable with the constant K if and only if for each ¢ € A and each v > 0 there holds

Jexp (A(@)0)]| < K. (6.21)
Proof. For an operator Y : Vg — Vg such that (Yw)(¢) = y(¢)w(¢p) there obviously holds ||Y] =
supge . [|y(#)|. Using this fact for y(¢p) = exp(—Z ~1(¢)L(¢)t/h) and Lemmas 6.2 and .4, we get

exp (—Z‘lLt> = sup |lexp (—Z‘1(¢)L(¢)t) H .
h d)eAﬂ_ h
By continuity and 27U Z?-periodicity of Z~!(¢) and L(¢), and finally by the definition of A(¢) we get
ot . t
exp| —Z L= ||| =sup |lexp| —Z(¢p)L(p)— ||| =
h ¢€A h

exp (40011 ) exp(iw-01)| = sup loxp (00 ).

peA
_ t
ew (-27'17) H — sup sup lexp (A(@))]].

= sup
peA

Taking the supremum over ¢, h > 0, we get

sup
t,h>0 v>0 pc A
It remains to recall the definition of the stability constant of a scheme. U

6.4. From a sine wave to an arbitrary smooth solution

The section is a toolbox for extending various estimates from single Fourier modes to arbitrary smooth solutions.

Lemma 6.14. Let F}, be a homogeneous mapping of per(Rd) t0 Vper, 7 = 0. Let p(s) = Z;‘]:1 c;sP7 with some
J € Nand cj,p; > 0. Suppose there exists 0 < 3 < m such that for each h and each o € Ag ), there holds

1Fne’ ™| < pl|exl)-

Then for each w € H;Teaf{r’pl""’p"} (R?) there holds
J
[Fwll <Y eI VP wl| + 207" Fyll gy | V7w, (6.22)
=1

where ¢ =1+ B7|T"||2 and ||y v,y = sup [ Fu f I/ 111l ¢r1)-

max{?" P1y-5PJ } (Rd)

Proof. Consider a function w € Hpe . Since w is periodic it has the Fourier representation £&4):

w = Zwaexp(ia-r).

acA
Recall that Ag/, = {a € A : T*a € [-3/h, 3/h)"}. By definition, put

Z We exp (fax - T).

OLE.AB/h
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Obviously, Fow = F,Sy + Fp(w — Sy). By Lemma 6.3 for a,a/ € Ag/n, a # o there holds
(Fpei>r, Fhei"‘/"’) = 0. By assumption and using the Minkowski inequality for sums (the triangle inequality for /o)
we get

IESHIP = Y Jwal [Faexplia-r)II* < Y |wal® (p(lal)® =

aEAg )y a€Agp

2 1/2\ 2

J J
= > [ Dlglwallel | <D | D lwal’lal™
j=1

acAg/;, \J=1 acAg/n

Extending the limits of the sum to & € A we obtain

1/2 J
Mwm<§h<2um%ﬁﬁ =Y el VPiw]. (6.23)

j=1 acA Jj=1
Now consider Fj,(w — Sy ). By the definition of Sy we have
w— Sy = Z We eXp (tax - T) .
e A\Ag)),
Fora € A\ Ag/,, we have
| < T (|2 T e = < T2 [T el < RBTHIT™ |2 < he.

Thus

2 2r
lw=SnlP =" " |wal*= Xiwﬂﬁ'<0w”W%W
aGA\AB/h OLG.A\AB/h @

Taking into account that ¢ > 1 we obtain
lw = Sl < 197 w] ((he)>” + 127) < 2]V w]2(he)*"

and
1En(w = Sn)l| < V2|l ¢y V7wl W€
Combining this (6.23) we get (6.22). O

Theorem 6.15. Consider a scheme of the form (R.8) and a homogeneous mapping I1,. [Let e € Q. | Suppose there
exist C' >0, Py > —1, and 0 < 8 < 7 such that there holds

lé(ep, I01) || < C|p|Pa T (6.24)

Sor each |@| € Ag [aligned with e].
1) If I is a bounded homogeneous mapping of HZ,.(R?) to Vper, then for each vo € H™" (RY) and

per|,e]
r > max{Pa, q} there holds
llen (v, Iy )|l < CA7A VP4 || + CRT [V ug |, (6.25)

where C = 4¢" [T g, (I Z[llw| + [IL]). € = 1+ 71T |l2. .
2) If Iy, is a local mapping with pe € (CUG))*, ¢ € N U {0}, then there exists C such that for each

Vo € C;:TI[’E] (RY), r € N, r > max{Pa, q}, there holds

len (vo, T )| < CRP [V P4+ g | + CRT (V7 g | oo
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Proof. 1f e is specified, let T : Lo e (RY) — Lo e (R?) be the projection operator taking each €™ to e!*" if o
is aligned with e and to zero otherwise. If e is not specified, ¥ is the identity operator. Clearly, ||¥|| = 1 and maps
HS, (RY) to HS,, (RY) for each o.

per per .
To prove the first statement, put Fj,vg = hey(vo,11;). By (6.24) and Lemma we have ||[Fpe'®™|| <
C|ha|Pa+1 for each o € Ap y, [aligned with e]. By Lemma .9 we have || Fy || (g1.1) < 1Tkl (g0 (1 Z]]|w] + || 1))
Since r > q then by Lemma 5.6 we have || Fp [|(r41,n) < 2||Fall(g+1,n)- Since [|T]| = 1 we have

IERZ ] (rt1,m) < 20l (g, (12]][w] + [[L1])-

Using Theorem for the mapping F3, ¥ and p(s) = C'(hs)P41! we get (6.29).

Now we prove the second statement. By Lemma B.9 there exists a local mapping I1), with fle € Lg(@), G =
G + B1(0), such that for k € {r,r 4+ 1} and each f € C},fer(Rd) there holds ||TI, f — ITj, f|| < ch¥||V* f||o. By
Lemma P.3, I}, is a bounded homogeneous mapping of Ly pe,-(R%) to Vpe,.. Then for each f € C71(R?) there holds

per

len (£, 1) = en(f, ) | < 1 Z1 (T, = ) (@ - V) 1+ ALY (T, = TT) £ <

r T r T r r (626)
S Z| IV (@ - V) flloo + A | LI [V flloo < cb™(1Z]] || + LDV floo-

The last inequality in this chain is by Lemma B.7. Particularly, this holds for f = ¢’®", so by the triangle inequality
for each v € Ay, [aligned with e] we get

llen (e I || < ClaPATAPa 4 &al ™ h".
Put Fyvo = hep,(vo, I1,). Since ||Z|| = 1, by Lemma .6 and Lemma .9 we have
1EREllrr1,m) < IFnll 1,y < Il qmy (1201w + LI < IR [I(IZ ] + [1L]).-
Using Lemma for the mapping F,T and p(s) = C(hs)PAt1 + &(hs)™+! we get
llen(Fvo, L) || < CRPA|[V P4+ g + CRT [V w .

From (6.26) by the triangle inequality for each vy € C H'l[ ](Rd) we obtain

per[,e

llen (vo, TL)I| < [len(vo, L) I| + h" [V uglloe < CRPA VAT og | + OBV g o
In the last inequality we used the inequality || V" lug|| < ||V g | so- O

Lemma 6.16. Consider a scheme of the form R.8) and a local mapping 11}, with e € (W3 (G))* (or (C1(G))*),
g € NU{0}. [Let e € Q.] Suppose for ¢ € Ag [aligned with e] there holds é(¢,11;,) = 0. Then for each
vo € HI'D (RY) (or €417 ol (R4)), there holds €y, (vo, I1;) = 0.

per[.e] per],

Proof. By assumption

Y(P) := Z(¢)é(p,11n) = (—L(@) + iw - ¢Z(p)) v(p,111) =0

for ¢ € Ap [aligned with e]. If e is not defined, y is an entire function of ¢, therefore y = 0 on C? by the uniqueness
theorem for a holomorphic function of several complex variables and thus é(¢, I1,) = Z~1(¢)y(¢p) = 0 for ¢ € R4,
If e is defined, the function y(ev) is an entire function of v, thus y(ew) = 0 for each ¢ € C and so é(ey,II;,) = 0
for v € R. By Lemma for each o € A [aligned with e] there holds e, (e!*",11;,) = 0. Since the linear span
of &7 o € A, is dense in H’+1(R?) and C"}1(R?), and the linear span of e!*", a € A and aligned with e, is

per per
dense in H ;;}e(Rd) and G} 11, (R9), the statement to prove is by boundedness of the linear operator e, ( -, IT;) in the
corresponding space (see Lemma [.9). O
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Theorem 6.17. Consider a stable scheme of the form (.8) and a homogeneous mapping 1. Let P,Q,C4,Cy > 0.
[Let e € Q.] Assume for all ¢ € Ag, 5 € (0, 7], [aligned with e] and all v > 0 there holds

1€(¢p, v, 1) || < Ch|p|” + Cav|p|“T. (6.27)

1) If 11, is a bounded homogeneous mapping of Hp,, (RY) t0 Vpe, then there exists C such that for each initial data
vg € H” (RY), r > max{Q + 1, P, q}, there holds

per]|,e]
llen (t, vo, IIp)|| < CLhY ||V vol| + Coth®|[ Ve ug|| + CTAT |V w0 (6.28)

2) If Ty, is a local mapping with kernel jic € (C4(G))*, ¢ € NU{0}, then then there exists C such that for each initial
data vy € C}, ](Rd), r > max{[Q] + 1, [P], ¢}, there holds

er|[,e
len (t, vo, T || < C1RT |V vl + Coth@ || VO g || + CR™ ||V 0] o (6.29)

For Q = +oo the terms with Cy vanish and the expression for r is replaced by r = max{ P, q} (or r = max{[ P], ¢}).
The constants C'in 1) and 2) depend only on 11,1, T, B, K, and the norm on cM°,

Proof. By (6.18) for each ¢ > 0, each h, and each @ € Ag/p, [aligned with e] there holds
len(t, €™, Iy || = ||&(hex, t/h,T14)|| < C1h"|a|” + Cath®|al 9.

Let ¥ be the same as in Theorem [5.13.
To prove the first statement, put Frvg = &, (¢, Tvg, I11,). By Lemma 6.9

[1£|

() < (K + D[l rny < 20K + 1)1l (g,

where K is the stability constant. Then by Lemma with p(s) = Cy(hs)” + Cath®s9*! we have (6.28).

Now we prove the second statement. By Lemma @ there exists a local mapping I:Ih ¢ Lo per (Rd) — Viper with
kernel jig € La(G), G = G + B1(0), such that for each f € C7,, (R?) there holds [|TI, f — I, f|| < ch"[[V" £l
with ¢ = ¢(d, r, II1,). In particular, ||TI,e’® " —II,e’ 7| < ch”|a|”. By construction and Lemma [A.4, ||IT;, || depends
only on /¢ and the norm on CM °. By the triangle inequality and stability we have

llen(t, '™ )| < [len(t, €7, Tp) || + (K + )[|(IT, — Ta)e'™ ™| <
< C1la)Phf + Cola|9THh? + ¢(K +1)|al"h".

Put Frvg = ep(t, Tvo, fIh). By Lemma .9 we have
1 Fnll ey < (K 4 DTl rny < (K + 1)|[TT]).
Then by Lemma with p(s) = C1(hs)T 4+ Cath@s?+! + ¢(K + 1)(hs)" we have
llen(t, vo, L) || < CLh™([V P wo|| + Coth® [V ug|| + Eh" ||V w0,
where ¢ depends only on 11,7, T, 3, K, and the norm on CM . By the triangle inequality and stability
llen(t, vo, L) < llen(ts vo, In) || + K| Tyvo — Mywol| + [Mpo(t, - ) — yo(t, - )|

w5 where v(t,r) = vo(t — w - 7). From here, (6.29) easily follows. O
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6.5. Miscellaneous facts
Corollary 6.18. Let 11, be a bounded homogeneous mapping of HS,,.(R?) to Vper or a local mapping with

per

pe € (C*(Q))*. Let the scheme (2.8) be stable and possess the formal order of accuracy P and the long-time simu-
lation order Q on H, (R) (or C,Egl(Rd)), r 2 max{Q + 1, s} (orr > max{P, s} if Q = o). Then for each p and
q such that 0 < p < P and p < q < Q the scheme possesses the formal order p and the long-time simulation order q
on H7 . (R?) (or C}[El (RY)). If ¢ < Q = oo we additionally assume ¢ < v — 1.
Proof. Let the scheme possess the formal order of accuracy P and the long-time simulation order (). Then by
Lemma for all ¢ € R? and v > 0 we have
E(¢, v, TR < Crlgl” + Cov||®FT + Cslp| ™.

Hence, in a neighborhood of ¢ = 0 we get

(¢, v, L) || < 2C1[@[” + Cov|ep| "™

By Theorem we obtain that the scheme possesses the formal order of accuracy p and the long-time simulation
order g on H”, (R%) (or C’IEQ (R4)). For QQ = oo the proof remains valid if we drop the terms with Cs. O

per

Corollary 6.19. Consider a stable scheme of the form (£.8) and a bounded homogeneous mapping 11, of ngr(Rd)
(or C’ger(Rd) ) t0 Viper. Then the following two statements are equivalent.

(Y1) The scheme possesses the formal order of accuracy P and the long-time simulation order Q).
(Y2) For each e € () the scheme possesses a error estimate of the form

len (t, vo, ILy) || < CLAY [V wol| + Coth@ ||V wg]| + C3h™ (Vv | (6.30)

forvo € Hy,, ((RY), r > max{Q + 1, P, q}, (or vy € Cy,, .(R?), r > max{[Q] + 1, [P],q}), where C1, Cs,

per,e
and C5 are independent of e, and || - || means either || - || or || - |lcc depending on the case.

Proof. The implication (Y1) to (Y2) is obvious. Conversely, assume (Y2). Taking (6.30) for vy = exp(i¢ - r/h), by

(6.18) we get
&, v, )| < C1l@|” + Cov|p|“T! + Cslg|"

for each ¢ € A. Since r > P, for ¢ € A, there holds (6.27) with another C}. It remains to use Theorem 6.17. [

Lemma 6.20. Let f(z) : R — C™ be analytical at x = 0 and satisfy || f(1/k)|| < g(1/k) for each k € N where
g(z) € CH(R) is a function such that g(0) = 0 and g'(x) > 0 for 0 < x < 1. Then there exists § > 0 such that there
holds || f(x)|| < Cg(2z) for 0 < x < 0, where C depends on the norm on C™ only.

Proof. We interpret C" as R*™ and denote by f,j = 1,...,2n, the components of f. Since f; is analytical then there
exists d; such that f}(x) # 0 for z € (0,;). Put 6 = min{min{d;}, 1} /2. Then f; is monotone on (0, d), f;(0) =0
and so for any £ € N we have

@] < [£277)] < eg27¥) < eg(22), we @77,27%10(0,0).
The inequality for || f(x)|| easily follows. O

Corollary 6.21. Let I1j, be a local mapping with kernel pn € (W4 (G))* (or (C1(Q))*). If for each o« € A and for
each h there holds ||ep, (e!* ", 11},) || < c(a)hPA, then there holds

||€}L(U07Hh)|| < C’lHVPAJFIUQHhPA + CQ||VmaX{PA’q}+1UQ||* hmax{PA"q} (631)

with some C1,Co > 0, where || - [« = | - ||ifp € WI(G)*and || - ||« = - |lco otherwise.
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Proof. Lete € (02, then there exists A > 0 such that Ae € A. Let h be such that 1/h € N. Then we get
[e(Ane, TIy) || < AlIZ7H | [len (e )| < cle)| 21| hPA*

Here the first inequality is by Lemma and the second one is by assumption. For ¢ = Ahe, where 1/h € N, we
have ()
A cle A
l[é(p, In) |l < WW\PAH = é(e)|p| AT
Since € is holomorphic with respect to the first argument by Lemma there holds ||é(¢, 11| < Cé(e)|2¢|PaH1

for each ¢ aligned with e in a neighborhood of zero. By Lemma 5.3 there holds ||é(¢,111,)|| < é|op|Pa*! in a
neighborhood of ¢ = 0. It remains to apply Theorem [.13. O

Proposition 6.22. Consider a scheme of the form 2.8), a local mapping 1), with the kernel pe € (W3(G))*, and

ec ) Let0 < P < Q < oo and R = max{Q + 1,q}. The scheme possesses the formal order of accuracy P
and the long-time simulation order Q) on H ;})?ér,e(Rd) iff it possesses the formal order of accuracy P and the long-time

simulation order Q on HY, . (R?) in the weak sense.

Proof. Let the scheme possess the formal order of accuracy P and the long-time simulation order () on HZ;QEW(Rd)
in the weak sense. Since e € €2, there exists A > 0 such that e € A. For vy = ¢**¢" Definition gives

H&h(t, GiAelT, Hh)” < Cth + CchQ.
Here c¢; and ¢, may depend on e but are independent of ¢ and h. By Lemma there holds
|é(\he, t/h, T1L)|| = |len(t, e T0) || < crhf + coth@.

For ¢ = Ahe, where 1/h € N, and each v > 0 we have

C1
| Ael”

C2
|)\e|Q+1 '

1€(, v, Tn )| < 917 + ][t

Since £ is holomorphic with respect to the first argument by Lemma there holds ||2(¢, v, 11;)|| < &1]p|F +
Gav|| 2! for each ¢ aligned with e in a neighborhood of zero. By Theorem the scheme possesses the formal
order of accuracy P and the long-time simulation order ) on H. ervv o(R9). The reverse implication is obvious. O

In particular, in the 1D case for local mappings Definition [3 is equivalent to Definition [.

7. The 1D case

In this section we consider the one-dimensional case. The main result of this section (Theorem [7.7) can be obtained
from the quasi-one-dimensional case considered in Section P.3 (see Lemma P.20). However, the 1D case allows us to
use powerful analytical tools that provide a clearer understanding of the enhanced accuracy in the long-time simulation.

Throughout this section we consider a stable scheme of the form (2.8) and a local mapping II,. In 1D the set of
the vectors a; contains only one vector a;, which has only one component. We assume it to be unit, i. e. the value h
coincides with the mesh period, which is the natural definition for the schemes with several DOFs per cell. Hence, T’
and U are the identity operators on R!.

7.1. Matrix decomposition

Let R™*™ and C™*" be the spaces of real and complex matrices of size n. Denote by A(C, R™*") the set of
functions A(¢) from C to C"*™ such that each element of the matrix A(¢) is a holomorphic function at ¢ = 0 and
for all i¢) € R in a neighborhood of ¢ = 0 there holds A(¢) € R™*™,

We need the following result.
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Theorem 7.1 ([29]). Let A € A(C,R™*™). Suppose there exists K > 0 such that for all € R and v > 0 there
holds || exp(vA(9))|| < K. Then in a neighborhood of ¢ = 0 the matrix A(¢) can be represented in the form

A(¢) = S(6)M(¢)S™(¢), (7.1)
Mo (o) 0 0 0
0 oM (o) 0 0
M(¢) = : : : : ) (7.2)
0 0 .. ¢™My(9) 0
0 0o ... 0 Moo(¢) =0

where S, M, S~1 € A(C,R™ "), the square matrices My,(¢), k € NU{0, 0o}, are non-degenerate for ¢ = 0 (except
k = o0), and some of them are absent.

Throughout this section we denote by S(¢), M;(¢), and M (¢) the matrices given by Theorem [7.1] for the matrix
A(¢) defined in (6.14).

Denote by R the set j € N U {0, oo} such that the block ¢7 M;(¢) is present in the matrix M (¢).

The function v(¢, IT;,) defined in (b.7) has the form v(¢,I1;,) = (I1;e'%*)o. Let v;(¢,111), j € R, be the compo-
nents of S™*(4)v (¢, I1),) corresponding to the blocks M (¢). Since v; (¢, I1;,) are holomorphic functions there exist
p; € NU{0} and ¢; € R\ {0} such that in a neighbourhood of ¢ = 0 there holds

cjlolP? < lvj(d, ) || < 2¢5]9]™. (7.3)
If vj(¢) = 0 we put by definition p; = oo and ¢; = 1. Put
N={j e NU{0}:p; < oo} CR.

This means that j € R\ Niff j = oo or p; = o0.
Below we show that the values p;, j € R, are responsible for the structure of the numerical error and define the
order of the truncation error, the order of accuracy, and the long-time simulation order.

Lemma 7.2. There exists j € R such that p; = 0.

Proof. Assume the converse: p; > 0 for each j € R. Then for each j there holds v;(0) = 0, therefore (II;1)y =
v(0,1I,) = 0. On the other hand, by definition for at least one £ € MY there holds (II11) ¢ = (ue, 1) # 0. This
contradiction proves the lemma. O

7.2. The structure of the truncation error

Lemma 7.3. Let I1j, be a local mapping with e € (W3 (G))* or (C1(G))*. If R = & then the scheme is exact, i. e.
for each vy € HITH(R) (or C4F1(R)) there holds ej,(vg, I1;,) = 0.

per per

Proof. Let j € X. Since X = @, either j = oo or p;j = 0. In a neighborhood of ¢ = 0 there holds M;(¢) = 0in the
first case and v; (¢, II,) = 0 in the second case. Thus for each j € X there holds M;(¢)v;(¢,11;) = 0 and hence

It remains to apply Lemma .16 O

Lemma 7.4. Let 11} be a local mapping. If X # &, then the scheme possesses the truncation error of order
Py =min{p; +j — 1}. (7.5)
JjeN
This value is optimal, i. e. the scheme does not possess the truncation error of order p > Pj.
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Proof. Since the matrices Z(¢), S(¢), and M;(¢) for each j are holomorphic functions in a neighborhood of ¢ = 0,
for small |¢| we have
le(@, )| < C D 1 [lv; (¢, 1) || < C max |of 77, (7.6)
jen JEN
By Theorem the scheme possesses the truncation error of order Py.
Conversely, let the scheme possess the truncation error of order p. Then by (6.17) we have ||é(¢, I1,) || < C|o|PT1.
Since S(¢) is non-degenerate, for small |¢| for each j € X there holds

167 M; () (6, )| < g+,

Since M;(0) is non- degenerate, we have ||Mj_1(¢)|| < 2|\MJ»_1(O)H in a neighborhood of ¢ = 0. Hence,

l[0; (¢, ) || < 22 M1 (0)]| [¢[PF=9. By (Z.3) we get p; > p+ 1 — j. Since this holds for each j € N, we
have p < Pa. O

7.3. The structure of the solution error
Now substitute the representation of A(¢) given by Theorem [1.1| into (6.16). We have

(6,0 TIh) = 5(0) (M) — 1) ST (6)o(6, 1) = 5(6) | Byl 1) |,

where

By(6v,10y) = (e — ) v;(,11) (7.7)

and v;(¢, 1) is defined in Section 7.1. For j € R\ X in a neighborhood of ¢ = 0 we have E;(¢,v,1I;) = 0. For
j € RputY = v¢? M;(¢). By the stability condition (6.21]) we have |le¥ || < K (), where 5(¢) is the condition
number of S(¢). By Lemma from (7.3) we get

1 E;(¢, v, 1) || < (K2(¢) + e) min {1, v[g)7 || M; ()]} 2¢;] ¢ (7.8)

Lemma 7.5. Let the scheme possess the formal order of accuracy P and the long-time simulation order Q > P. Then

for each j € X there holds

p; 2 min{P,Q+1— j}. (7.9)
Proof. By Lemma in a neighborhood of ¢ = 0 there holds

(6, v, TTR) | < Cull” + Covlg|9F,
ince is non-degenerate, we get the estimate for each error component:
Since S(0) i deg get the esti fi h p
1E5(6, v, )| < C1Ig|” + Cor|o| 4+ (7.10)
in a neighborhood of ¢ = 0. Particularly, for v = |¢|~7||M;(0)| = we get
1B, (¢, 1617711 M, (0)[| 71, T1) | < C'|gmintF @173,
From ([7.7) we have

Ey(o.lol 11,0001 10 = (exp (0 ) = 1) vonn)

By Lemma .13 the matrix exp(M;(¢)/||M;(0)||) — I is non-degenerate for ¢ = 0. Then it is non-degenerate in a
neighborhood of ¢ = 0 and

s (6 T < || (exp(M(0)/ 1M O)1)) = 1) | 113 (8,161 1M;(0) |72, T | < €[ gfiniP@+1-21,
Now ({Z.9) is by the definition of Dj. 0
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Lemma 7.6. If pg = 0 or p1 = 0, then the scheme does not possess any order of accuracy. Otherwise the scheme
possesses the formal order of accuracy P and the long-time simulation order () where

P = min (max{p; +j — 1,p;}) = min{p, min(p; +j — 1)}, (7.11)
JeR j21

Q— min (% Jj=1). (7.12)
Minimum over the empty set is assumed to be +occo. The values P and Q given by ([.11)) and ({I.12) are optimal in the
sense of Definition [,

Proof. First consider the case when py = 0 or p; = 0. Assume that the scheme possess the formal order of accuracy P
and the long-time simulation order Q > P. Then by Lemma [7.3 there holds py > min{P,Q + 1}, p; > min{P, Q}.
Since ) > P, each of the assumptions py = 0 or p; = 0 immediately gives P < 0.

Now assume pg # 0, p1 # 0. This yields P # 0. Let us show that Q > P. By (fZ.11)) there holds py > P. Thus

Q= min (p;+j—1)= _min (pj—&-]—l) mm(pj—i—]—l) P.
jipj<P j2lip;< iz

Now we prove that the scheme possesses the formal order of accuracy P and the long-time simulation order Q.
Indeed, by ({7.8) in a neighborhood of ¢ = 0 there holds

&, 1, )| < C D B (6,1, Ty)|| < C D min{|g[P, v|gPr 7} (7.13)
JER JER
Therefore,
|66, I < C 3 vlofP o +C 37 o < Cvjgl T+ C'g)" (7.14)
j:pj<P Jp; =P

By Theorem we get the desired estimate (2.17).

Now we show that P and Q are optimal. Let estimate (2.17) be valid under the substitutions Q' for Q and P’ for
P where Q' > P’ > 0. Then for each error component given by (7.7) there holds (7.10) with the same substitution.
By Lemma [7.3 for each j there holds one of the inequalities

/

m/P
+i-1>2Q"

Since Q' > P’, ([.19) for each j yields P' < max{p;,p; + j — 1}. Taking minimum over j, using (.11)) we get
P < P.
Now assume that P’ = P. Then (7.13) yields

(7.15)

"< mi ) = mi i —0
Q pgngrlg,(pj +j-1) pr;lglg(pj +i-1)=Q
Thus estimate (2.17) under the substitutions Q’ for @ and P’ for P yields the alternative
P < P,
P=P Q<Q.

This means that P and Q are optimal in the sense of Definition [§. O

7.4. The main result

Theorem 7.7. Let 11}, and P}, be local mappings with the kernels fi¢, fie, correspondingly, where (fic, 1) # 0 for each
&€ € MY. Suppose the scheme possesses the formal order of accuracy P € N and long-time simulation order Q € N
in the sense of I1j,. Then there exist diagonal matrices ¢(™) ¢ RM 0, m = P,...,Q, such that the scheme possesses
the truncation error of order Q) in the sense of HZP’Q) given by (2.12).
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Proof. By Lemma there exist C7, Cy > 0 such that in a neighborhood of ¢ = 0 there holds
e, v )| = [[ (49 = 1) o, || < Calol” + Cavlo 2+,

Using representation @), 7.2 provided by Theorem 7.1, ina neighborhood of ¢ = 0 define the holomorphic function

oI 0 ... 0 0
0 &I . 0 0
w(¢) = S(9) : : S () (e, 111),
0 0 SmI 0
0 0 0 6ul

where the blocks correspond to the blocks of M (¢), §; = 0ifp; > P and §; = 1if p; < P. Since S(¢), S~(¢),

and v(¢, ITj) are real-valued for i¢ € R, so0 is w(¢). Then w(—¢) = w(¢). By construction w(¢) satisfies

lw(@) = v(o, )| = O(I¢]").

Since
S0 Mo () 0 . 0 0
0 S1OMi(4) ... 0 0
A(p)w(9) = S(¢) : : : [ ST, I,
0 0 o O™ My (6) O
0 0 e 0 0
by Lemma 7.3 in a neighborhood of ¢ = 0 there holds
[A(@)w ()] < @jglgp 6111 (8) || lv; (6, L) | = O(|g| ™). (7.16)

By Lemma .7 there exist real-valued diagonal matrices €("™), m = P, ..., @, such that v(¢, ng’Q)) — w(e) +
O(|9|9*1). Now (F.16) yields

(o, 1Y) = A(9)v(o, 1Y) = O(|9|9F1).

By Theorem the scheme possesses the truncation error of order @ in the sense of HEIP’Q). O

7.5. Construction of a scheme with specified properties

Proposition 7.8. Consider the transport equation 9v/9t + wdv/dx = 0, w # 0. Let R be a finite subset of N U {0}.
Then for any set of p; € NU {0, 00}, j € N, containing at least one zero there exists a scheme of the form (£.8) and a
local mapping such that the values p; coincide with those defined by 73).

Proof. Let ¢y, 5, m € N, be coefficients of a finite-difference approximation of the first derivative on the uniform
mesh with unit step possessing exactly the order m — 1, i. e.

16 3 enge® =io— Y S o = a4 06 (7.17)
r=0

r
NESm NESm

where 7, # 0, and S,,, C Z is a finite set. For m = 0 put Sy = {0}, co,0 = signw, so (7.17) also holds. Forn & S,
put ¢y = 0. ~
Now we define a scheme of the form (2.8) and a local mapping. Put M° = R,

SzUSm; Zo=1, Z,=0,n#0; L,=diag{wce,, &€ M"};
meR
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dpe
(nfne = 7 L 0h), pe<o0i (Wflye =0, pe = oc.

dxPe
Then (u(6, 111))e = (i6)"* and

A(¢) =iwg — Y Lpe'" = diag{iwgﬁ —w cene € € MO} = diag{mga% +0(¢st), ¢ e MO}.

neS nes

Thus we have a representation of the form (7.1)~(7.2), with the blocks j € R of the size 1 and no other blocks, and the
values p; coincide with those defined by (7.3). If the finite-difference schemes with the coefficients Cm,y are stable
then the scheme we constructed is also stable. U

7.6. One-dimensional case: summary

Consider a stable scheme of the form (2.8) and a local mapping IT;,. In the sense of I1,, the truncation error and the
solution error have spectral representations (f7.6) and (7.13), correspondingly. Then by Lemma forvy = exp(iazx),
a/m € Q, there holds

llen (vo, 1) || < CZ vaﬁj%”hpj-irj—l < C/HVPA-i-lvloPA7
JERN
llen(t,vo, ) || < € min {[|VP3wg[BP5, || VP9 Hwg|[hP 1} < C|V vl |h + C'[|[ VO g |[B9t, (7.18)
JEN

where N and p; are defined in Section [7.1] and P4, P, and () are given by (7.3), (711, and ([7.12):

Py= rjneig{pj +j-1} P= min{po,rj,rgrll(pj +i-1} Q= jeNmin<P(pj +j=1).

pj
Theorem [7.7 states that there exists HgP’Q) in the sense of which the truncation error satisfies
len (o, L") < CIIVE* o |9,
By the Lax — Ryabenkii theorem (Theorem f.1]) the solution error satisfies
len(t, o, L) < CKZ7H| [V o 192,

Theorems and allow to extend these estimates to vy smooth enough.

Example. Put X = {3,5}, p3 = 1, and p5 = 0. A scheme with these parameters exists by Proposition 7.8. By
Lemma @ this scheme possesses the truncation error of order P4 = 3. For vy = exp(iax), a/m € Q, the error

estimate (7.18§) reads as
len (¢, vo, 1) || < Crmin{h|[ Vo, k% Voo [} + Co min{|wo ||, ][ Vovo]}-

By Lemma [7.4 the scheme possesses the formal order of accuracy P = 3 and the long-time simulation order Q = 3,
these values being optimal in the sense of Definition [§. However we can write the estimate

len (¢, vo, I)|| < C1hl[Vvol| + Cah*t][ Vool

so the scheme possesses the 1st formal order of accuracy and the 4th order in the long-time simulation. The values
P =1 and @) = 4 are not optimal in the sense of our definition. Note that due to Theorem 7.7 there exists a local
mapping that differs from IT;, by O(h) and gives the 4th order of the truncation error, the 4th formal order of accuracy
and the 4th long-time simulation order.

8. The general case

In this section we prove Theorem [ and state some of its corollaries.

34



525

530

535

8.1. The method of auxilliary mapping

The following lemma describes the method of auxiliary mapping (see Proposition f.2) using the spectral represen-
tation of a scheme.

Lemma 8.1. Consider a scheme of the form (R.8) stable with a constant K and a bounded homogeneous mapping
11y, onger(Rd) t0 Vyper or a local mapping 11, with pe € (C17(G))*. Suppose there exists a function w(¢) and
c1,c2 > 0 such that in a neighborhood of ¢ = 0 there holds

lo(¢,111) — w(@)|| < crl@l”, [ A(@)w (@)l < calp| ¥, (8.1)

where 0 < P < Q < oo (we assume || = 0). Letr > max{Q + 1,q} (if P < Q < o) orr = max{P, q}, (if
P<Q=o00)orr > q(if P = Q = cc). Then for é(¢, v,11},) defined by (6.16) there holds

(e, v, 11 || < (K + 1)ea|p|” + vEca|p|9H! (8.2)

and the scheme possesses the error estimate (R17) on H’, (R?) (or C}[Zl(Rd)) with the same P and Q,

per

Cy = (K + 1)e1, Cy = Keo, and C3 > 0 depending only on I, r, T, K, the neighborhood of ¢ = 0 in the con-
ditions of the lemma, and the norm on cM’,

Proof. We have

Je@. .1l = || (4@ = 1) wig ) | < || (4@ = 1) (w(@) = v(g, 1a)) | + | (4@ — 1) w(@) | <

< llexp(vA(9)) — 1] [[w(@) — v(e, )|l + /BTA("’)dTA(qb)ww) <

0
v

< (lexpA@)] + 1 () ~ (6, 10)] + [

0

eTA(¢)H dr || A(@)w(9)| < (K + Ver|d|” + vKea|p|@H.

Thus we get (8.2). It remains to use Theorem f.17. O

8.2. The existence of an auxiliary mapping

Let C™*" be the space of complex matrices of size n. We need the following result.

Theorem 8.2 ([28]). Let A € C"*™ and v € C™. Suppose for each v > 0 there hold |e"?|| < K and
(e = Doll < (C1 + Cow)vll- (83)

Then for w = (A*A+€2)~1e?v where e = Cy/C, (if Cy = 0 or Cy = 0 then the vector w is the corresponding limit)
there hold B B
[v—w| <Ciol, [[Aw] < 6Cqvll, (8.4)

where § depends on n and K only.

Note that w = argmin(C3|jv — wl|> + C}||Aw]|?).
Denote

WPRU(g) = (A°(P)A(@) + B @) g[@HPly(g,Ty), 85)
where v(¢, I1;,) and A(¢) are defined by (6.7) and (6.14).

Corollary 8.3. Let the scheme ([R.8) be stable, 11, be a local mapping, and (R.17) hold. In a neighborhood of ¢ = 0
there holds

[v(, I11) — WPQ(@)|| < 5C1 |97, | A(@)WT9(P)| < 5C2|9p|9T, (8.6)

where § depends only on MO, ||I1;,1

, and the stability constant.

35



Proof. We have
lv(¢, Iy)|| = [|(ITy exp(igp - 7))ol — ITp1]| as & — 0.
From (2.17) by Lemma in a neighborhood of ¢ = 0 there holds

(@, )] < 5C111" + vCl]9 .
By (6.16) in a neighborhood of ¢ = 0 there holds
1(e”4?) — Do(¢, 1)l < (2C1]@] 7T L]| ™" + 2G| FH [T 1| v)|o(, Ly )|
It remains to use Theorem B.2. U

Now we are ready to prove Theorem [, which we repeat here.

Theorem P. Let IT), be a local mapping with pe € (Wi (G))* or (C9(G))*. Let P,Q > 0, r > max{P,q}, and
R > max{Q + 1,r}. Let the scheme (2.8) be stable and possess the error estimate (2.17) on H;fer (RY) (or C,[éﬁ (R9)).
Then there exists a homogeneous mapping I:Ih : Lzﬁper(Rd) — Vier such that

I f = W f | < CRPINT I+ ROV FIL), - llen(f, TTn) || < CRPYIVIHf]| (8.7)

so foreach hand f € HE, (R?) (or C;Efﬂ (R%)), where C does not depend on h and f, and || - ||« means either || - ||

545

or|| - || depending on the case.

Proof. First we consider the case pg € (W3 (G))*. Recall the notation Ag = {a € A : T*a € [-3,8)?} for
B > 0. By Corollary B.3 there exists 3 > 0 such that (8.6) holds for ¢ € As. Since v(—¢,1I),) = v(¢,II},) and

A(—¢) = A(g), by construction we have WH?(—¢) = WPQ(¢). Using the continuity of v(¢, I1;) and the first
inequality in (B.6) we get

sup [[WHR(@)]| < sup [lo(p, ITn)|
¢€-AB ¢€.A[—;

By Lemma .6 with G = Apg there exists a bounded homogeneous mapping II;, such that W¥ Q) = v(e, ﬁh). Let
Fy, =TI, — 1. For o € Agy;, using the first inequality in (B.6) we obtain

| Fue™™ || = [(Fne™ ™Yol = [I(Tae™™)o — (ae ™)l = [WPR(cth) — v(erh, TLy)|| < 6C1hT |l (8.8)
Applying Lemma we obtain the first inequality in (B.7). The second inequality in (B.6) yields the second inequality
in (87) by Theorem b.13.

Now consider the case pe € (C(G))*. By Lemma B.9 there exists a local mapping IT;, with the kernel
fie € Lo2(G + B1(0)) such that

L f = T Il < CRTV f oo
By the above proof we have (8.7) with the substitution of IT;, for II},, and it remains to use the triangle inequality. [

8.3. An analytical criterion

For a given scheme (2.8), a mapping II,, and two numbers 0 < P < Q < oo denote

-1
FPOg) = 727" (¢, 1) (A" (9)A(9) + @1 77) A" ($)A@)v(, ). (8.9)
Lemma 8.4. For WP given by (®B.3) there holds

FPQ(g) = |72 ||u(e, I1y) — WEL() |12 + || 2TV A(@)WF < (9)| 1% (8.10)
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Proof. We have
|| TP A% () A(p)W PP () = v(p,IT1,) — W O().

Thus

6| A(9)W O (9)* =
= || 2@ (A (9) A(@)WD D (9), WHC()) = (v(, TT1) — W2 (), WPE(9)).

On the other hand,

Q> FPO () = (|| 2@ A (@) A(d)WD (@), v(,IT1)) = (v(h, IT)) — WF D (), v(¢p, T1,)).
Now (B.10) is obvious. O

The following theorem establishes an analytical criterion which allows us (at least in theory) to find the optimal
values of the formal order of accuracy and the long-time simulation order.

Theorem 8.5. Let the scheme (R.8) be stable, 11, be a local mapping with kernel pg € (Wi(G))* (or (C4(G))*),
0 <P <Q<oo R>=max{Q,q+ 1}. The scheme possesses the formal order of accuracy P and the long-time

simulation order Q) on H;;T (R%) (or CI[(I,}] (RY)) if and only if FF*Q(¢p) is bounded in a neighborhood of ¢ = 0.

Proof. Assume the error estimate (2:17). Then in an neighborhood of ¢ = 0 we have (8.6) and thus by (8.10) there
holds

FPA¢) < |9] 72 (P CRBPT) + 24D (6203|9241 ) = 62(C2 + CF).
On the other hand, assuming that F(¢) < C? from (8.10) we get
[o(ep, 1) = WHR(@)| < Clo| 7, [|A@)WT ()] < Clop| T

By Lemma B.1] the scheme possesses error estimate (2.17) on err(Rd) (or ng] (R9)). O

Lemma 8.6. Let the scheme (R.8) be stable, 11y, be a local mapping with kernel e € (W3(G))* (or (C4(G))*),

0<P<Q<oo R>max{Q,q+ 1}. Let é € ). The scheme possesses the formal order of accuracy P and the
long-time simulation order Q) on Hli,’é(Rd) (or C£T75(Rd)) if and only if FP*@ (&) is bounded as 1 tends to zero.

The proof is similar to Theorem B.3.

Proposition 8.7. Let I1j, and Py, be local mappings with kernels yi¢, jie € (W4 (G))* (or (CU(G))*), and (jig,1) # 0
foreach & € M. Let e € Q. Suppose a stable scheme of the form (2.8) possesses the formal order of accuracy P and
the long-time simulation order Q) < oo in the sense of 11;, on HE _ _(R?) (or CIEZ«L(R‘{)), where R = max{Q + 1, ¢}

per,e

Then there exist real-valued diagonal matrices Q;(gm), m = [P],...,[Q], such that the scheme possesses the trunca-
[P1,1Q1

,e

tion error of order [ Q)] in the sense of Hgl ) given by R.12) on the direction e. As a corollary, the optimal values

of the order of accuracy and of the long-time simulation order on H pir’e(Rd) (or C,Lgle (R%)) are integers.
Proof. Let W@ (¢) be given by (B.9) and W () = W@ (ey)). By Lemma B.4 the function 77 (ev)), where
FPQ is defined by (8.9), is bounded as 1) — 0. Using (B.10) for ¢ = et we have

lv(pe, ) = W(@)| = O(p["), [Awe)W (v)l| = O(l¥|?*). (8.11)

By construction each component of T (¢)) is a ratio of two analytical functions of the real argument 1; by (B.11]) it
is bounded as 1) — 0, thus W (¢)) is an analytical function. Thus both expressions under norm signs in (8.11) are
analytical at 1p = 0 and so P and Q can be replaced by [P] and [Q], correspondingly. By Lemma [.§ there exist
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real-valued diagonal matrices ¢ m = [P],...,[Q], such that for the mapping H;I? fen given by (R.13) there
holds
Pl,
v(e, I g 1Y) = W) + 0w+,

thus by the triangle inequality we have
le(we, ITETTODY || = | A(we)o(ve, ILTTTTED) || = O(jp [T+,

It remains to use Theorem [6.13. O

Given a scheme with enhanced accuracy in the long-time simulation, Theorem [ states that there exists an auxiliary
mapping IIj, explaining this fact. This mapping is generally not of the form (2.11)). For the 1D case, Proposition §.7
states the existence of an auxiliary mapping of the form (.11)). Hovewer, in the multidimensional case, an auxiliary
mapping of the form (R.11) generally does not exist, see a counter-example in Section [12.3.

9. The good

Throughout this section we consider a stable scheme of the form (2.§) with stability constant K and a local map-
ping IT;,. In this section we will prove Theorem [ and Theorem [, which is splitted into Theorems JA and BB.

9.1. The order of accuracy
In this subsection we establish the optimal value of the formal order of accuracy.

Lemma 9.1. Let the matrix A(¢p) be given by (6.14). Then the eigenvalue X = 0 of A(0) is semisimple, i. e. there
are no Jordan cells of size greater than one corresponding to A = 0.

Proof. Assume the converse. Represent the matrix A(0) in the form A(0) = SJS~! where J is its Jordan normal
form. Then e¥4(®) = Se¥/S—1. The explicit expression for e”” shows that ||e””|| grows unlimitedly as v — oo and
so does ||e”A(9)]|. This contradicts the stability condition (6.21]). O

Consider (¢, v,11;,) given by (b.16). By Theorem in a neighborhood of ¢ = 0 there holds A(¢) =
S(p)M(¢p)S~1(¢p) where M () has the form (5.10). Let v;(¢p,I1},) be the components of S~1(¢p)v(¢p, I1}) cor-
responding to the blocks M ) (¢). Denote

By(¢,v. 1) = (M@ — 1) v (e, 11, ©.1)

then

&, TI) = S(@) (M@ — DS L()u(eI1y) = S(¢) | By nT) | 92)

Note that the notation is similar to the 1D case but the decomposition is different. We will also use the notation M *) ()
for the submatrix of M (¢) containing the blocks M) (¢), j # 0, and the notation v, (¢, I1},), E. (¢, v, I1;) for the
unions of all blocks excluding j = 0 of the corresponding vectors. Below we assume that the norms of subvectors are
inherited from CM", i. ., for example, [lv;]| = [I(0,...,0 vj, s 0T

Since M (9)(0) = 0, there holds M () (¢) = Zk M ( )bk where M( )(¢) are holomorphic. Thus
MO ah ZM (ah)ayt
is a holomorphic function of ¢, h, and . Particularly, if A(0) = 0 then é(axh,t/h,II}) is a holomorphic function of

t, h, and o for each ¢ in a neighborhood of h = 0 and & = 0.
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Lemma 9.2. Suppose the scheme (.8) possesses the estimate (R.17) in the sense of a local mapping 11,,. Then in a
neighborhood of ¢ = 0 for each v > 0 there holds

[v(, 1) || < 6C1 |1, | Eu(@, v, 10) || < (K +1)5Cy ||, (9.3)

Moreover, if P is integer, then ) depends only on |M°|,

Proof. By Lemma in a neighborhood of ¢ = 0 there holds
12(¢p, v, )| < 2C1||" + Cov|g| @7

Thus for each j we have

1E; (¢, v, 114)|| < enllS™H@)|| (2C1[7 + Cov|p|9F)

where ¢,, depends on the norms in use. Directly from (B.1)) for each j # 0 and each v > 0 we get

[[vj (&, 1Tn)|| <

{exp (M(j)((b)V) - I}_lH 1B (¢, v, 111)||.

Put v = 1/(2||MY)(0)||). Then by Lemma in a neighborhood of ¢ = 0 we have

(2||AX4(8>(?)>||> i (o OO Hh)

< 20c,,62 (201 1p|” + Cy |¢IQ“> < 1006%¢,,Cy || 7.

-1

[0 (¢, ) || < 4 1E;(, v, Tn)|| < 105(M9(0)) ’

<

2IIM“)( )l

Since v;(¢,I1;,) is holomorphic then the degree P in the right-hand side can be improved to [ P]. This leads to the
first inequality in (9.3). The second inequality follows from the first by stability. O

Lemma 9.3. Let the scheme (.8) possess the estimate (2.17) in the sense of a local mapping 11,. Then in a neigh-
borhood of ¢ = 0 there holds

1M O (p)vo(, 111 | < Clg| 7T+ (94)

Proof. Similar to the previous lemma, we have

1Bo(¢, v, )| < el STH@)| (2011917 + Cov|p] %) . (9.5)
Using the function f given by (5.7) (f(x) = (e* — 1)/z), formula (9.1 is equivalent to

Bo(e,v,T04) = f (MO (@)v) MO(6) v vo(5,TT1).
Assuming M () (¢) # 0 put v = 1/||M©) (¢)||. By Lemma 5.12 we get ||(f(vM () (¢)))~"|| < 4, thus
4
[ MO @)oo, 11) | < Z11Eo(, v T < CLIGIT MO ()] + Cl| 2.

If MO () = 0 then MO (P)vo(h,11,) = 0. Since MO (p) = O(|¢|) as ¢ — 0and Q > P we get

| M@ (p)vo(ep, TT,)|| = O(||F+!) as ¢ — 0. Taking into account that M) (¢) and vy (¢, IT},) are holomorphic,
we arrive at (D.4). O

Now we are ready to prove Theorem fl, which we repeat here. Recall that for n € N by ), we denote a set of
vectors {e, € O, k=1,...,0%} nird—1) such that {(ey, - 7)" } form a basis in the set of homogeneous polynomials of
order n (see Lemma [A.6).
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Theorem [Il. Consider a scheme of the form (.8), stable with a constant K, and local mappings 11, Py, with ker-
nels pe, fie € (W3(Q))* (or (C1(G))*). Let P4 and P be the optimal orders of the truncation error and accuracy,
correspondingly, in the sense of I1j,. Let 3z = minge o [(fig,1)| > 0 and R = max{q, P} + 1. Then the following
holds.

1. P4 and P are integers.

2. Either P = Pjpor P = Py + 1.

3. If P = Py + 1 then there exist real-valued diagonal matrices &™), |m| = P, such that the scheme possesses
< 6C,, where C} is

the truncation error of order P in the sense of HgLP’ ) given by (2.12). Moreover,
the constant in estimate (2.17) and & depends only on K, 3, P, |M°|, and the norm on CM .

4. If P = P, then there exists no set of matrices {€™) |m| = Py + 1}, such that the scheme possesses the
truncation error of order Py + 1 in the sense 0fH2PA+1’PA+1) given by (2.12).

5. If L(0) = 0 then P = Pj.

6. Ifthe scheme possesses the formal order of accuracy Pa+1on HL,. (R?) (or CLL . (R?)) foreach e € Qp, i1,

per,e

then it possesses the formal order of accuracy P = Py + 1 on H (R?) (or per(Rd))

per
7. P coincides with the optimal order of accuracy in the weak sense.

Proof. 1. Let the scheme possess the order of the truncation error P4. Then by Corollary there holds (6.31]).
Taking vg = exp(icx - r), by Lemma in a neighborhood of ¢ = 0 we get ||é(, 111,)|| < c|op|Fa+L. Since
é(¢,11;,) is a holomorphic function, then we have ||é(¢, IT1,)|| < &|¢|/F41+1. By Theorem the scheme possesses
the truncation error of order [ P4 . Thus the optimal value of the order of the truncation error is an integer.

Let the scheme possess the order of accuracy p (possibly not optimal). Put by definition

wio)=5(6) ()5 @hlo.1m). 0.6

where the identity matrix corresponds to the block M (°)(¢). By Lemma P.2 we have

(@) - vioml = [ste) (%) | < cls@llv@ i <scie. o)

If p is integer, & in (D.7) depends only on K, | M°| and the choice of norms. By Lemma D.3 there holds

A8006) =56) 310 gy ) = Ol ©.8)

By Lemma B. 1| the scheme possesses the formal order of accuracy [p]. This proves that the optimal order of accuracy
is an integer.
2. By Lemma P.2 and Lemma P.3 there holds

feto. 1)1 = 5600 (oot )| = otiol”)

By Theorem the scheme possesses the order of the truncation error P — 1. Thus P < P4 + 1. On the other hand,
by Theorem we have P > P4. Since both P and P4 are integers there holds either P = P4 or P = P4 + 1.

3. Now assume P = P4 + 1. Let w be given by (9.6). Since v(¢,11;) = v(—,11;) and A(¢p) = A(—o), for
W ($) = (w(¢) + w(—))/2 by BF) and ©F) with p = P we have

[W () — v(ep, IIp) || < denCalp|”,  A(@)W () = O(|p|" ). (9.9)

By Lemma .7 there exist €(™), |m| = P, such that for H;LP’P) there holds

o(p, TPy = W () + O(|p|7+).
40



620

625

630

635

640

645

650

By the triangle inequality we get

R PP PP
(¢.11,"") = A(¢)o(9,11,"7) = 019"+,
so the coefficients €(™) satisfy the statement of the theorem. By construction (see (6.12) and (6.13)),

(€™)ee = -

ilmim)!

(v (0.P)) " (D™ (W(9) = v(. ) o) -
Using (P.9) and Lemma B.3 we get |(¢(™))¢ ¢| < 571 d¢c,,cpCy, where cp depends on P only. From here, the estimate
for ||€(™)|| is obvious.

4. Suppose there exists a set of matrices ¢(") such that the scheme possesses the truncation error of order P4 + 1
in the sense ofHELPAH’PAH). Then for w(¢) = v(o, HgPAH’PAH)) we have (B.1]) with P = Q = P4 + 1 and thus
by Lemma B.1| the scheme possesses the formal order of accuracy P4 + 1 and the long-time simulation order P4 + 1.

5. If L(0) = 0, the block M *)(¢) does not exist, and by Lemma p.3 we have ||é(¢,111,)|| = O(|¢|"+1). By
Theorem the scheme possesses the order of the truncation error P, i. e. there holds P = Py.

6. Now let the scheme possess the order of accuracy p = P4 + 1 on HE, _(R?) for each e € €2,,. Arguing as in

per,e

the proof of Lemma for ¢ € span{e} in a neighborhood of ¢ = 0 we get
(¢, 1, 1n )| < ca(e)| @] + ca(e)v|plPFt.

Following proofs of Lemmas .2 and P.3 for ¢ € span{e} in a neighborhood of ¢ = 0 there hold (.3) and (p.4). By
Lemma .3 the inequalities (9.3) and (D.4) hold for each ¢ in a neighborhood of ¢» = 0 with another multiplicative con-
stants. Substituting this into (D.1)) by stability we get E, (¢, v, II;,) = O(|¢|'?!) and Ey(¢, v, 11;,) = O(v|o|P1+1),
thus (¢, v, I1;,) = O(|¢|P! + v||P1+1). It remains to apply Theorem [6.17.

7. 1f the scheme possesses the order of accuracy P in the weak sense on H% _(R?), then by Proposition for

per
each e € (it possesses the order of accuracy P in the strong sense on H pRer,e (R%), and it remains to use the previous
statement. O

An auxiliary mapping that provides (B.7) can’t be generally found in the form (R.12), see Section for the
example. We just proved that this is possible if Q = P. Now we consider another two cases when this is possible,
namely, the simple case and the quasi-1D case.

9.2. The simple case

Below we assume that the scheme is 0-exact, i. e. the scheme preserves constant solutions, or, that is the same,
> L,(II11)g = 0. Here the subscript 1 means the substitution 1 for i and the subscript 0 means the substitution 0
for n. Otherwise the order of accuracy is P4 = —1 and by Theorem [l| the numerical solution does not converge to the
exact one.

Since the scheme is 0-exact, then the operator A(0) has nontrivial kernel: A(0)¢ = 0, where ¢ = v(0, ITj,). We shall
say that the scheme is simple if the zero eigenvalue of the operator A(0) is simple or, this is the same, dim KerZ(0) = 1.
The scheme is simple iff the vector vo (¢, I1},) defined in Section P.1| is of size 1.

Proposition 9.4. Suppose a scheme has no steady solutions but the constant. Then it is simple.

Proof. Let € € Vpler be the constant sequence formed by the element ¢. By assumption the scheme has no steady
solutions but ¢, ¢ € R. So Ker L N V., = span{¢}. By (6.14) we have A(0) = —Z~*(0)L(0). Consider a vector

wo € CM” such that wy ¢ span{¢}. Letw € Vpler be the constant sequence all elements of which are equal to wy.
Then Lw # 0. By (6.4) all the block components of Lw are equal to L(0)wy, thus we have L(0)wy # 0. Then
A(0)wg = —Z~10)L(0)wg # 0. Hence, wg = ¢ is the only (up to a factor) solution of A(0)wy = 0. Therefore by

Lemma P.1| we obtain that A = 0 is a simple eigenvalue of A(0). O

The discontinuous Galerkin method with the upwind flux in 1D is a simple scheme unless the transport velocity is
zero. On a multidimensional simplicial translationally-invariant (i. e. invariant with respect to the translation by the
vector of any mesh edge) mesh the DG method with the upwind flux is a simple scheme unless the transport velocity
w is parallel to one of the mesh faces.
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Lemma 9.5. Suppose a simple scheme (R.8) possesses the estimate [R.17) in the sense of a local mapping 11, Then
in a neighborhood of ¢ = O there holds

MO (g)|| < C|p|I 2T (9.10)

Proof. Denote by \(¢) the only element of the matrix M () (¢). It is a holomorphic function. By Lemma P.2 in a
neighborhood of ¢ = 0 we have ||v. (¢, I11,)|| < C|@|”. Thenvo(0,11;,) # 0; assuming the converse, we immediately
get (I11 1) = v(0,1I,) = 0, which contradicts the definition of the local mapping. Recall that vo(¢, 1) is a 1-
component quantity. Hence for small |¢| by (.9) there holds

2¢,

—_—— P 14 Q@ .
|U0(0,Hh)|(01|¢| +02 |¢| +1)

eV @) _ 1‘ <

Put v = |¢|~[?]; then the right-hand side tends to zero as ¢ — 0. Hence, \(¢)|¢|~ @1 — 0. Since \(¢) is a
holomorphic function of ¢ at ¢ = 0, then A\(¢p) = O(|p|I?1+1). O

Lemma 9.6. Let 11}, be a local mapping. Let a simple scheme possess the formal order of accuracy P and the long-
time simulation order Q) and, at the same time, the formal order of accuracy P’ and the long-time simulation order
Q. Then it possesses the formal order of accuracy [max{P, P'}| and the long-time simulation order [max{Q, Q'}].

Proof. By Lemma P.3 and Lemma .3 we have |\(¢)| < C|o|[@1+! and ||[v* (¢, I11,)|| < C|¢|'F1. At the same time,
we have similar inequalities with the substitution P’ for P and @’ for Q. Thus we have the same inequalities with the
substitution max{P, P’} for P and max{Q, Q'} for Q. By direct substitution into (9.2) and (9.1]) we get

[&(@, v, )| < Ol PEI 4 Cpjg|Imt@ @I

It remains to apply Theorem f.17. O

Lemma P.g shows that the situation mentioned in the comments to Definition | and showed in Section [7.4 is not
possible in the simple case.

Lemma 9.7. Consider a simple scheme and a local mapping 11,. Then the optimal value of the long-time simulation
order is integer.

Proof. This follows from the previous lemma with P = P’ and Q = Q’. O

Lemma 9.8. Consider a simple scheme and a local mapping 11y,. Let p € N. If for each q € N the scheme possesses
the formal order of accuracy p and the long-time simulation order q, then it possesses the formal order of accuracy p
and the long-time simulation order cc.

Proof. By Lemma P.§ for each s € N we have | M(?)(¢)|| < Cs|p|*t!; since M) () is holomorphic at ¢ = 0,
we have M (0)(d)) = 0 in a neighborhood of zero. Using Lemma P.2 and representation (P.2), (B.1]), we have
lé(p, v, 1)l < c|¢|P, where ¢ does not depend on v. By Theorem the scheme possesses the formal order
of accuracy P and the long-time simulation order ) = oc. O

Proposition 9.9. For a stable scheme (R.8) with |M°| = 1 and a local mapping 11y, the optimal values of the order
of truncation error, the order of accuracy, and the long-time simulation order coincide.

Proof. Let P and () > P be the optimal values of the order of accuracy and of the long-time simulation order. Then by
Lemma .3 we have || M () (¢)|| < C|p|2t!. Since M(©) isa 1 x 1-matrix and there is no block || M *)(¢)||, we have
1) = [M(@)] = IMO(g)] < C|@le+T. By (B13) this yields [|é(, 11,)]| < Clé|2+[[v(0,1,)]|. Then
Theorem states that the scheme possesses the order @) of the truncation error. By stability P > @, thus P = Q.
Clearly, @ is the optimal value of the order of the truncation error, otherwise by stability the scheme possesses the
formal order of accuracy and the order of the long-time simulation greater than (), which contradicts the assumption.

O
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Lemma 9.10. Let II;, and Py, be local mappings with kernels pui¢, [ie such that (fic, 1) # 0 for each § € M. Let
a simple stable scheme of the form (.8) possess the formal order of accuracy P € N and the long-time simulation
order Q in the sense of I,. Then there exist real-valued diagonal matrices €™ such that the scheme possesses the

truncation error of order [Q] in the sense of HELP’ [en given by .12).

Proof. We repeat a fragment of the proof of Theorem [I, using Lemma .3 instead of Lemma p.3. By Lemma p.2 and

Lemma P.3 for

w@)=5(6) ()5 @hlo.1m).

we have

(@)~ (o1l = [st@) (G )| < cls@lioto.mn = oger),

A6 =56 (30 gynpmy) ) = Ol

By Lemma .7 there exist €(™), P < |m/| < [Q], such that for HEZP’ "D there holds

(¢, TIPTODY — () + O(|p)1Q1H1).

By the triangle inequality we get

e(¢,1179) = A(p)u(9, T17Y) = O(| 9| (1),

By Theorem the scheme possesses the truncation error of order [@] in the sense of H;LP’Q), so the coefficients

¢(m) satisfy the statement of the lemma. O

Lemma 9.11. Let the scheme (.8) be simple, 11, be a local mapping with a kernel s € (W5 (G))* (or (CT(G))*),
and let p,q > 0. Suppose for each e € Q) the scheme possesses the formal order of accuracy p and the long-time

simulation order q on H fgr o(R%) (or C,[ﬂe(Rd) ), Then the scheme possesses the formal order of accuracy p and the

long-time simulation order q on H _(R?) (or C,[fﬂ (RY)), R = max{r,q + 1}.

per

Proof. By assumption for each e € Qp and each ¢ aligned with e we have

(¢, 1, TIn) | < c1(e) |l + ca(e)v|d|"F.

Then for ¢ aligned with e there hold (D.3) and (P.10). By Lemma b.3 the inequalities (9.3) and (B.10) hold for each ¢
with some other multiplicative constants. Substituting this into (D.1]) by stability we get E. (¢, v, I1;,) = O(|¢|"1) and
Eo(¢, v, 11;,) = O(v|¢p|[91+1), thus &(¢, v, IT1,) = O(|¢|P! + v|¢|[71+1). Tt remains to apply Theorem [.17. O

Lemma 9.12. Let the scheme be simple. Then the optimal values of the formal order of accuracy and of the long-time
simulation order coincide with the ones in the weak sense.

Proof. This directly follows from Proposition and Lemma P.11]. O

Lemma 9.13. Suppose the scheme is simple, and 11y, is a local mapping. Let Pa, P > 0, and Q) be the optimal
values of the truncation error, of the formal order of accuracy and of the long-time simulation order. Then either
Pi=P=QorQ>P=Psy+1

Proof. 1f [M°| = 1, then the statement of the lemma follows from Proposition P.9. So without loss we assume
|M°| > 1. By Theorem [[ the values P and Q are integers and there holds either P = P4 or P = P4 + 1. So we need
only to prove that Q > P4 + 1 implies P = P4 + 1.

Since

leto 0l = |560) ( ypoioeniarn) )| = ot
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we have || M) (p)v.(p,111)|| = O(|¢|724T1). Then ||v. (¢, I11)|| = O(||"4F1) and by stability
1B (¢, v, 1)l < Clgp| "2
Lemma P.3 yields || M) ()| = O(|¢|2+") and hence
1Eo(, v, 1) | < Clp| 90,
Combining these estimates we get
&, v, Iy )| < C'[@] "4 + C'v|@| 2.
IfQ > P4 +1 then by Theorem the scheme possesses the formal order of accuracy P4 +1,thus P = P4+1. O

Theorem BA. For a simple scheme, Theorem [ holds.

Proof. For a simple scheme, the five statements of Theorem P follow from Lemmas @, b.10, .11, p.12, p.13, in
respective order. O

The following proposition may be useful in a computer-based analysis of a scheme.

Proposition 9.14. Let the scheme (R.8) be simple and 11;, be a local mapping. Let Q € N be such that
|det A(p)| < ¢|p|9Tt holds for ¢ = Q and does not hold for ¢ = Q + 1. Let P4 be the optimal value of the or-
der of the truncation error. Let P = Py + 1 if Q > Py and P = Py otherwise. Then P and Q) the optimal values of
the formal order of accuracy and of the long-time simulation order.

Proof. Denote by \(¢) the only element of the matrix M () (¢). Since the eigenvalue A = 0 of A(0) is simple, in
a neighborhood of ¢ = 0 there holds |A(@)| < 2ccy;' ||+, where cry is the product of all nonzero eigenvalues of
A(0) taking into account their algebraic multiplicity. Substituting this estimate for M) (¢) = A(¢) and (P.3) into
(©.2) and (B.1]) we get

12(, v, ) || < C|[” + Cv|ep|

where p is the optimal value of the formal order of accuracy. Thus by Theorem the scheme possesses the formal
order of accuracy p and the long-time simulation order Q.
Now we claim that the values p and Q are optimal. Assume the converse. Let Q' > Q be the optimal value of the
long-time simulation order. Then by Lemma P.3 there holds |A(¢)| < C|$|9 '+, that contradicts the assumption.
The fact that p = P follows from Lemma P.13. O

9.3. The quasi-one-dimensional case

Recall that a scheme of the form (R.8) is quasi-1D if the stencil S of the scheme belongs to a 1D subset of Z<, i. .
there exists n € Z% such that S C {mm, m = —M, ..., M}. The scheme is quasi-1D iff the matrix A(¢) depends
only on ¢ - e for some e € R%. In this section we will use the notation e for this vector.

In 1D case (when d = 1) every scheme of the form (2.8§) is quasi-1D. In the multidimensional case an example of
a quasi-1D scheme is the DG method on simplicial translationally-invariant meshes when the vector of the transport
velocity is collinear to one of the mesh edges.

Theorem 9.15 ([30], §3.5, Corollary 3; [2€], §2.6.2). Let A(v) be a holomorphic and selfadjoint N x N-matrix
defined on the interval [ip1,1)2]. Then there exists an unitary matrix U()), holomorphic on [Yn, )], such that

U () AW)U () = diag{\i (¥), ..., An(¥)}.

Lemma9.16. Let f (1)) and g(¢) be holomorphic functions at ) = 0 and ¢ = 0, correspondingly. Let e € Q. Suppose
there hold (1)) ~ ¢ as vy — 0 and |f(¢ - €)g(9)| < c|@|*+, where a,b € NU {0}. Then in a neighborhood of
¢ = 0 there holds

[f(d-e)g(p)] < dclop - e]*|a]", (9.11)

where & depends on a + b and the space dimension d only.
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Proof. LetC' = {x € R? : e-x > |x|/2}. By Lemma [A.§ there existe, € C N QL k =1,.. .,Cg;}fl, such that
(e, - r)° form a basis in the space of homogeneous polynomials of order b. For different e the set of vectors e, can
be chosen the same modulo rotation. By assumption for each €’ € C' N in a neighborhood of 1) = 0 there holds

]+ P
(e -e)) S e e

Thus [0"¢(0)/0e’™| = 0 for n < b and |8bg(0)/6e’b| < 2'*9ple. By Lemma .1 we have D™ g(0) = 0 for |m| < b
and | D™g(0)| < éc for [m| = b, where § = 21251 S, |7{™)| does not depend on e. O

< 21 eyt

lg(e'y)| < 7

Lemma 9.17. Let the scheme be quasi-1D, T1;, be a local mapping, 0 < P < Q < oo. Then the function F©?(¢)
defined by (B.9) is bounded as ¢ — 0 iff the function

FPR(g) = 16121710 (6,T1) (A4°($)A(9) + |- P19 171) 7 4 (9) A()u(h, Ty,
is bounded as ¢ — 0.

Proof. Throughout this proof we will use the notation 1y = ¢ - e. By Theorem there exist holomorphic matrix
function & and holomorphic functions \; such that U~ () A*(¢p) A(¢)U () = diag{\;(¢)}. Therefore,

Ai(®)

FP) =177 D U (¥)v(e, 1n)),I° WOOENCECR=RE

FEMO

A (%)
() + [pAQIH1I=TP])

FPOp) = 1|21 > [ ()v(ep, 1))

jeMo
First assume that 779 (¢) is bounded. Then we have

FIPLIRT(p) < FIPLIRI(p) = FPQ(¢) < 0.

Thus by Theorem B.3 the scheme possesses the formal order of accuracy [ P] and the long-time simulation order [Q].
By Corollary it possesses the formal order of accuracy P and the long-time simulation order (). Using again
Theorem B.3, we obtain that 7/ (¢) then is bounded as ¢ tends to zero.

Now assume that 7@ (¢) is bounded in a neighborhood of ¢ = 0. Then for each j € MY there holds

A (01U @)o(d, ITn))1* < Ol (A () + 97 @F11) 9.12)

in a neighborhood of ¢ = 0. The function A;(¢) is holomorphic at ¢ = 0 and non-negative (as the eigenvalue of
matrix A*(¢)A(x))). Thus either A\;(¢)) = cxp?% (1 + O(v))) as ¢p — 0 with some ¢, > 0 and ¢; € NU {0} or
A; (%) = 0 (in this case we put g; = +00).

The function (U~ (¢ - €)v(,111,)); is holomorphic at ¢p = 0, let r; be the lowest order of the terms in its Taylor
series. From (D.12) we have

2¢; + 2r; > 2P + min{2¢;,2(Q + 1 — P)}
or, equivalently,
qj +r; 2 min{g; + P,Q +1}.
Since r;, q; € N, we have
q; +r; = min{g; + [P],[Q] +1}.

Ifg; + [P] < [Q] + 1, thenr; > [P],s0 |(U ' (¢)v(¢p,T01));]? < &[>T and thus

A O @)v(e, ) > < pPTPIN; ().
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Ifg; + [P] > [Q] + 1, thenr; > [Q] +1—g; and

A (D) U ()o(p,TTp)) | < 6?4 |2 QTH179) =
— 5¢2(TQ1+1—fP1)w2(qj—(fQ1+1—TP1))|¢|2(fQ1+1—q.7') < 5¢2((Q1+1—fP1)|¢|2FP1.

Combining the results for both cases, in a neighborhood of ¢ = 0 we get

A (DU (@)o(, TTn)); 1P < AT () + [ PTTTED), (9.13)
From here, the statement of the lemma is obvious. O

Lemma 9.18. Suppose the scheme is quasi-1D and 11}, is a local mapping. Then the optimal values of the formal
order of accuracy and of the long-time simulation order are integers.

Proof. The optimal order of accuracy P is integer by Theorem [[. Let the scheme possess the formal order of accuracy
P and a long-time simulation order Q. By Theorem B.3, 77>?(¢) is bounded as ¢ — 0. By Lemma s0 is
FFb 'Q(¢) and, applying this Lemma again, so is F/>[?1(¢). By Theorem B.3 the scheme possesses the formal order
P and the long-time simulation order [Q]. O

Lemma 9.19. Let the scheme be quasi-1D, 11}, be a local mapping, P € N. Let the scheme possess the formal order
of accuracy P and the long-time simulation order s for each s > P. Then the scheme possesses the formal order of
accuracy P and the long-time simulation order oo.

Proof. By Theorem B_3 the functional F*(¢) is bounded in a neighborhood of ¢ = 0. Thus using the notation of
Lemma for each j € M° and s > P there holds

q; +r; = min{g; + P,s+ 1}

Thus for each j there holds either ¢; = +oc0 or r; > P. Put w(¢p) = U(vp)diag{x; }U ' (¢)v(¢p, I1;) where x; = 0
if r; > P and x; = 1 otherwise. Then

lw(@) —v(o, )| < clg]”,  A()w(¢) =0,
and it remains to apply Lemma 1. U

Lemma 9.20. Let 11, and Py, be local mappings with kernels e, fic € (W3 (G))* (or (CU(G))*), such that (ji¢, 1) # 0
for each &€ € MO. Suppose the scheme (R.8) is quasi-1D and possesses the formal order of accuracy P € N and the
long-time simulation order Q € N in the sense of 11, on H (R?) (or CJX, (R?)), where R = max{Q + 1, q}. Then

there exist real-valued diagonal matrices €™ such that the scheme possesses the truncation error of order Q in the
sense of HgP’Q) given by (2.12).

Proof. By Theorem B.3, /@ (¢) is bounded as ¢ — 0. By Lemma so does FPQ(¢p). Put

w(g) = (A ($)AB) + 16 e 1=7) " |- @1y (g.11,) 9.14)
and note that

FPR(¢) = || 2 v(e, I1n) — w()[|* + || 2" |- | > @~V | A(p)w (o). (9.15)

(the proof of this fact repeats the one of Lemma B.4). By construction, w(¢) = W (¢)/0(1), there W () is holo-
morphic at ¢ = 0 and 9(¢)) = det(A*(1ve) A(ve) + P2 @H1=P)) Letd(xh) ~ cp? as 1p — 0, where ¢ # 0. All the
terms in the Taylor expansion of the numerator contain the multiplier 19, otherwise w(¢) is unbounded and so does
FPQ(¢), which contradicts the assumption. This proves that w(¢) is analytical at ¢» = 0.

From (D.19) and the boundedness of F€ it follows that ||v(¢, I11,) — w(¢)|| < C|¢|” and

|A(P)w(®)|||¢ - e|” < Clp-e|?THg|” < C|p| 9T
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Since A(¢p)w(¢) is holomorphic, this implies A(¢p)w(¢) = O(|¢|9H1).
By Lemma .7 there exist (™), P < |m| < @, such that for HELP’Q) there holds
P,
v(, T,Y) = w(g) + O(||4H),
By the triangle inequality we get
&, 11,7Y) = A(p)v(¢, 117V = O(|p| ).

By Theorem the scheme possesses the truncation error of order () in the sense of H%P’Q) , so the coefficients ¢(™)
satisfy the statement of the lemma. O

Lemma 9.21. Let the scheme (.8) be quasi-1D, 11}, be a local mapping with a kernel jie € (W3 (G))* (or (C"(G))*),
andlet 0 < P < @ < oo. Suppose for each € € Q(QW the scheme possesses the formal order of accuracy P and the

long-time simulation order Q on HE . (R?) (or C (R (R®)). Then the scheme possesses the formal order of accuracy

per,é per,é
[P] and the long-time simulation order [Q] on H[.(R?) (or C}Efﬂ (R9)).

Proof. We will use the notation of Lemma P.17. By assumption, for each direction é € fl(m the scheme possesses
the order of accuracy P and the long-time simulation order () on H - (R%) for s large enough. By Lemma .6, the

er,é

functional 7@ (1)€) is bounded as 1) tends to zero. Thus for each j € MO and each & € €, there holds

X (W)U (W)v(,TIn)) ;| < Cel @l (/A () + @]9 7F) < 2C5|p|mrt@ Tt Prask,

where ¢ belongs to a neighborhood of zero in span{é}. Since the function on the left-hand side is the absolute value
of a function analytical at ¢» = 0, by Lemma .3 in a neighborhood of zero we have

X (0)|UH(@)o(d, ITn));| < ORI+,

where C does not depend on e.
If for a particular j there holds [P] < [Q] + 1 — g;, then we have

(U (W)u(d,IT)),] < &)™
and hence (.13). If ¢; > [Q] + 1 — [P], then by Lemma we have
AU (@)u(@, Tn))1? < v | TATHIma) 2 [QTHTPD 2T

and we again have (0.13). Thus F*1:[?1(¢) is bounded as ¢ — 0. By Lemma so does FIP1:1Q1 () and by
Theorem B.9 the scheme possesses the formal order of accuracy [ P] and the long-time simulation order [Q]. O

Lemma 9.22. Suppose the scheme is quasi-1D and 11, is a local mapping. Then the optimal values of the formal
order of accuracy and of the long-time simulation order coincide with the ones in the weak sense.

Proof. Let the scheme possess the formal order of accuracy P and the long-time simulation order () in the weak sense.
By Proposition for each e € (2 the scheme possesses the formal order of accuracy P and the long-time simulation
order in the strong sense on Hf  (R?). It remains to use Lemma .21 O
Theorem BB. For a quasi-1D scheme, Theorem [3 holds.

Proof. For a quasi-1D scheme, the first four statements of Theorem [ follow from Lemmas p.18, p.20, p.21, p.22,
in respective order. The fifth statement of Theorem [§, which only concerns only simple schemes, has been already
proved in Theorem BA. O
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10. Algorithms for scheme analysis

Throughout this section we consider a scheme of the form (2.8), a local mapping I1;,, and assume that the scheme
is stable and 0-exact. For the cases where the existence of a local mapping of the form (2.12) is proved it is possible
to construct algorithms for the analysis of the scheme.

10.1. The order of the truncation error

Lemma 10.1. Let Py € NU {0}. Then the following statements are equivalent.

1. The scheme possesses the truncation error of order Py.

2. There holds ||e(¢,111)| = O(|¢|PA+1) as ¢ — 0.
3. For each multiindex m such that |m| < Pa there holds (e, (r™/m!,11;)), = 0.

Proof. The equivalence of statements 1 and 2 is by Lemma and boundedness of Z(¢) and Z~'(¢). Now we
prove the equivalence of statements 2 and 3.
Denote by II}, the operator taking f to ITj, f = hey,(f,II1,). By (6.19) we have

Z(¢)é(¢, 1) = —Flhen ('™ 111))(¢) = —F[Lne'*"/")(9).

The mapping I, is of the form (R.11)) and enjoys all the properties of a local mapping with the only exception that
1,1 = 0 (recall that P4 > 0). Particularly, Lemma .3 remains valid for II,. Then by Lemma [.3 we obtain

Z(9)é(¢,11n) = —v(p, 1) = (M1’ ™) =
~ Irm ,,,m
R A ET)
m! m/!
0<|m|<oco 0 0<|m|<oco 0
Since Z(¢) and Z~1(¢p) are uniformly bounded, the equivalence of statements 2 and 3 is obvious. O

Lemma 10.2. Let P4 € NU{0} and e € Q0. Then ||é(ex,11,)|| = O(|¢|Fat1) as b — O iff foreachm =0, ..., Py
there holds (e1((r - €)™/ml,I11))o = 0.

Proof. The proof repeats the one of the previous lemma. O
Recall the following standard algorithm.
Algorithm 1 (to detect the optimal order of the truncation error).

1. Put Py =0.
2. Compute f™ = —(e1(r™/m! 111))o for each m such that |m| = Py + 1.
3. If for each m with |m| = P4 + 1 there holds f™ = 0 then put Py = P + 1 and return to the step 2.

Proposition 10.3. If Algorithm |l| returns the value P4, then P4 is the optimal order of the truncation error. If Algo-
rithm |l| loops endlessly, then the scheme is exact, i. e. ep(f, 1) = 0 for each f.

Proof. By Theorem |l the optimal order of the truncation error is integer, so the first statement follows from
Lemma [10.1]. If the algorithm loops endlessly, then by Lemma there holds ||é(¢, I11)|| = O(|¢|®) for each
s € N. Since é(¢,I1},) is holomorphic at ¢ = 0, we have é(¢, II;,) = 0 in a neighborhood of ¢ = 0, and it remains
to apply Lemma p.16. 0
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10.2. The order of the truncation errvor in the sense of auxiliary mappings

Let IT;, and P, be local mappings, and the kernel of P, satisfy (jic,1) # O for each ¢ € MP°. Let €(™) be

(p,9)

real-valued diagonal matrices. Now we discuss the truncation error in the sense of the mappings II,”*’ given by

©.12).
Lemma 10.4. Let H(p D pe an operator of the form (R.12) with coefficients €™). The scheme possesses the truncation
error of order P4 € N in the sense ofH(p’q if and only if for each |m| < P4 there holds
LO)E™ (Pi1) = — (& | —,m{pminlimi=tan ) ) (10.1)
m)! 0

where the mappings TIPm{ImI=1.9}) gre based on the same coefficients €(™).

Proof. If ¢ < Py, put €™ = 0 for each ¢ < |m| < Pa, so without loss we can assume that ¢ > Pj.
For each [m| < P4 we have

(el (r,nﬁ”*”))) =<—ZH§”’PA)(w-V)T+LH§P’PA)T> -
m! 0 m)! m!/,

— (p7PA L (p,Pa)
==Y 7y (H m!) +> Ly (H m'>n

nes nes

The function (w - V)r™ is a polynomial of order not higher than |m/| — 1; thus ng Fa)

H(lp’lml_l). Besides,
(ngpv“)’"') = (Hﬁp"m'”’"'> + ™ (Pi1), = (Hﬁp"m'”rd + €™ (Pi1)o.
m! ), m! ), ml/,
Therefore, using L(0) = >, Ly, we have

P\ (b lm|-1) (m)
(o)) o () e

By Lemma the scheme possesses the truncation error of order P, iff the left-hand side of this identity is zero for
each |m/| < P4. Thus we get the statement of the lemma. O

acts on it the same way as

In 1D case equation ([L0.1) takes a form

m—1 min{m—1,q} m—n—1
(m) _ x (n) z
L(0)e (Pll)o_w§ Z, (Hl(ml)!> + § ¢ (Pl(mnl)!>
n n

7768 n=p

2 min{m—1,q} " £
n

"765 n=p

10.3. The order of accuracy

Algorithm 2 (to detect the order of accuracy).

1. Detect the order of the truncation error P using Algorithm [l

2. Compute f™ = —(e1(r™/m! 111))o for each m such that |m| = Py + 1.

3. If for each m with |m| = P4 + 1 there holds f™ € ImL(0) then put P = P4 + 1, otherwise put P = Py4.

Theorem 10.5. The value P given by Algorithm | coincides with the optimal value of the order of accuracy.

Proof. Let Py, be any local mapping such that (P11)g ¢ # 0 for each ¢ € M. Obviously, the algorithm returns the
value P = P4 + 1 iff for each multiindex m such that |m| = P4 + 1 the system L(0)€™)(P;1)y = f(™) (as a
system for the coefficients of ¢(")) is consistent. By Lemma this is equivalent to the existence of ¢("™) such that

the scheme possesses the order P4 + 1 of the truncation error in the sense of H;LPAH’PAH) given by (R.12) with the
chosen mapping Pj,. By Theorem [l this holds iff the scheme possesses the order of accuracy P4 + 1. O
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10.4. The quasi-one-dimensional case
Algorithm 3 (to detect the formal and the long-time simulation orders in the quasi-1D case).

. Detect the optimal value of the order of accuracy P using Algorithm [J.

. Choose any local mapping Py, such that (P11)o.¢ # 0 for each & € M°.

. Put Q' = P.

. While the set of equations (e, (r™ /m)!, H§P7Q/“)))0 =0, where 0 < |m| < Q' + 1, is consistent as a system for
diagonal matrices {€™) P < |m| < Q' + 1}, increment Q'

AW N =

Theorem 10.6. Let the scheme (.8) be stable and quasi-1D. Let P and Q be its optimal values of the formal order
of accuracy and the long-time simulation order (see Definition [8). If Q = oo, then the algorithm loops endlessly.
Otherwise the values P and Q' given by Algorithm [ coincide with P and Q.

Proof. First assume Q < co. By Theorem [J there exist €(™), P < |m| < Q, such that the scheme possesses the
truncation error of order () in the sense of H;LP’Q). Then é(¢, H;LP’Q)) = O(|¢|9"!) and by Lemma the matrices
¢(m) satisfy the system checked at step 4 for Q' = @ — 1. Thus the algorithm either returns Q" > Q or loops endlessly.

If Q = oo, then the for each ¢ € N the scheme possesses the formal order of accuracy P and the long-time
simulation order . By the argument above, the algorithm will find coefficients ¢(™) for each P < |m| < g. Since ¢
may be chosen arbitrary high, the algorithm will loop endlessly.

Now suppose that the algorithm returns values P and Q' < co. Let {€(™) P < |m| < Q'} be a solution of the
last consistent system and let HgRQ ) be given by (2.17) with these coefficients (if no systems checked at step 4 were
consistent, put HELP’Q ) = IT;). By Lemma there holds €(¢,H§LP’Q )) = A(d))v(qb,HELP’Q )) = O(|g|@' ).
Obviously, v(¢, H%P’Q )) —v(¢, ;) = O(|¢|"). Thus by Lemma B.1| the scheme possesses the formal order of
accuracy P and the long-time simulation order @’ in the sense of IIj, i. e. there holds Q > Q'.

If the algorithm loops endlessly, then arguing as above we obtain that the scheme possesses the formal order of

accuracy P and the long-time simulation order s for each s € N, s > P. By Lemma it possesses the formal order
of accuracy P and the long-time simulation order @ = oc. O

The following proposition simplifies the analysis in practice allowing to reduce the number of unknowns while
processing Algorithm [J. Note that it assumes the additional condition (¢, 1) # 0 for each & € M.

Proposition 10.7. Let I1;, and Py, be local mappings with kernels ji¢, fie such that (pe, 1) # 0 and (fi¢,1) # 0 for
each € € M°. Let p,q € N. Suppose there exist real-valued diagonal matrices €™, p < |m| < g, such that the
scheme possesses the truncation error of order q in the sense of Hgf ') given by R.12). For each m, p < |m| < g,
take any &, € M° and ¢, € R. Then there exist real-valued diagonal matrices ¢m) p < |m| < g, such that

(m)

€, e = Cm and the scheme possesses the truncation error of order q in the sense of ﬁ;zp ) given by (R.12) with the
substitution €(™) for €M),

Proof. Denote f,_1(¢) = v(¢, Hglp ’Q)). The function f,_1(¢) is holomorphic by construction; by assumption
(fp—1(0))¢ # 0 for each & € M. Denote

1 (f(D)em
Ymlf] = b <<v<¢,7>h>>fm

m! ilml

)‘ ) g(d)) :U(¢,H;L)-
¢=0
For k = p, ..., q define inductively

78) = @)1+ X amlio)™)
|m|=k
choosing constants a,,, |[m| = k, to satisfy
Yo lfe — 9] = cm. (10.2)
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Each of these equations easily reduces to the linear equation

(v(0,I1))e
(U(O7 Ph))fm

which is uniquely solvable since by assumption (v(0,11))¢,, # 0. Moreover, f;, satisfies ([L0.9) for each |m| < k.
Indeed, for k = p this is by construction. Let it be true for fi_1. If [m| < k — 1 then

Qm + Ym[fk—l - g] = Cm,

Vinlfi = o] = Ylfics = a1+ Yo | fe1(8) T anli)"] =+ 2 an¥inlfia(@)i0)"

In|=k In|=k
It remains to note that Y., [f (&) (i¢p)™] = 0 if |n| > |m]|.
Denote W(¢p) = fu(¢). By construction, there holds W(¢p) = wv(¢,II;)(1 + O(|¢|?)) and
W () = v(¢p, IIIP" q))( O(| P)). By Lemma [.7 there exist real-valued diagonal matrices €™, p < |m| < ¢
such that W (¢) = v(¢, 11 §Lp ) + O(|#|9t1); by construction from ([10.2) (see (6.13)) we have éé:?gm = €. Then

(o, TP = A(@)v(¢, TIV) = A(@)W () + 0|l ") =
= A(¢)v(¢, IPD) (1 + O(|p[)) + O(|¢] ") = O(|p|"*).

By Theorem .13 the scheme possesses the truncation error of order ¢ in the sense of H(p D, O
10.5. The simple case

For a simple scheme the optimal values of the formal order of accuracy and the long-time simulation order can be
found by the following algorithm.

Algorithm 4 (to detect the formal and long-time simulation orders in the simple case).

. Detect the order of accuracy Py using Algorithm [I.

. Choose any local mapping P, such that (P11)o.¢ # 0 for each & € M°.

. Putm = Py + 1.

. Compute f™ = —(e1(r™/m)!, H(PAJrl mfl))) for each m such that |m| = m, substituting into HgPAHm*l)
the previously found coefficients Q:(") Py+1<|n|<m—1

5. If for each m with |m| = m there holds f™ € ImL(0), then:

* find any diagonal matrices €™ satisfying L(0)€(™) (P11)g = f™;

* increase m by one,

AW N =

* return to the step 4.
6. Put@Q' =m — 1.
7. Put P' = Py if Q' = Pa and P' = P4 + 1 otherwise.

Note that at step 5, since Rank L(0) = |M°| — 1, the equation specifies a one-parametric family of diagonal
matrices €. Any matrix of this family may be chosen.

Theorem 10.8. Consider a simple scheme of the form (2.8) and a local mapping 11;,. Let P and Q be its optimal
values of the formal order of accuracy and the long-time simulation order (see Definition B). If Q = oo, then the
algorithm loops endlessly. Otherwise Algorithm W returns values P' = P and Q' = Q.

Proof. Let P4 be the optimal order of the truncation error. Let P’ and Q' be the values returned by the algorithm; if
it loops endlessly, formally put P’ = P4 + 1, Q' = co. We need to prove that Q' = Q, then the equality P’ = P will
follow from statement 5 of Theorem .

First we prove that Q > Q’. If Q' = Pj, this is obvious by stability. If P4 < Q' < oo, arguing as in the proof
of Theorem we get that the scheme possesses the orders P’ and (. By Lemma .4 it possesses the orders P and
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Q', hence Q > Q'. If Q' = oo, using the same argument, for each s > P’ the scheme possesses the formal order of
accuracy P’ and the long-time simulation order s. By Lemma P.§ it possesses the formal order of accuracy P’ and the
long-time simulation order Q@ = oo.

Now we prove that Q" > Q. Let H;PA'H’Q/) be given by (R.12) with the coefficients ¢("™) found by the algorithm.
By construction and Lemma [10.4,
e L7H§PA+1,Q/) -0
m! 0

(PA+1,Q")

for each [m| < @', i. e. the scheme possesses the truncation error of order )" in the sense of II; . Assume
that Q > Q’. If Q' is an optimal value of the truncation error in the sense of HELPAH’Q ), then by statement 5 of

Theorem J the scheme possesses the formal order of accuracy Q' + 1 in the sense of HgPAH’Q/). By statement 3 of
Theorem [I] there exist ¢(™), |m| = Q' + 1, such that the scheme possesses the truncation error of order @)’ + 1 in the

sense of HgPAH’Q e ()’ is not an optimal value, then the scheme possesses the truncation error of order Q' + 1

in the sense ofHﬁLPAH’Q/H) with €™ = 0, jm| = Q' + 1. These coefficients €™, |m| = Q' + 1, give a solution
of the equation to solve at step 5, thus the algorithm makes one more step. This contradiction proves that Q' > @ and
thus the whole Theorem. O

Note that in the quasi-1D case Algorithm | may give a wrong result (see Section [11.3)).

11. 1D examples

Throughout this section we consider 1D transport equation (2.4) with transport velocity w = 1, i. e.
Ov/Ot + Ov/dx = 0, and put a; = 1, 1. e. the parameter h coincides with the mesh step.

11.1. Pl discontinuous Galerkin method

Consider the discontinuous Galerkin method (its definition may be found, for example, in [B1]) based on the
piecewise-linear polynomials on the uniform mesh with the nodes z; = jh. On each cell (x;, x;41) define two basis
functions:

Tjy1 — T i

and extend these functions by zero outside (z;, z;+1). For the numerical solution

N-1

u(t,x) = Y (ub 6k () + ul()0f (@),

7=0
du; 1 1 _
( >$+h[< ! >“f‘+<8 ol)“j—1]=0- (1.1

It has the form (2.8) with S = {0, —1},

the DG scheme gives

O ==
W= =

N o] =

Z_, =0, Z0:<

O~
SSIE=N
N—
™~
L
|
7N
o o
o |
—_
N—
~
=)
I
7N
‘ =
N
SIS NI
N———

By definition (6.14) we have

. LolNTh L L i ip—3 —1+4de %
aw=or-(1 1) (5 077 )= (7 i)
We see that A(0) # 0 and
4
det A(¢) = (—2ip — 6)e™ + (—¢? — 4igp +6) = % + O(¢%).
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The eigenvalues of the matrix A(¢) are Ai(¢) = id — 2 — e~*? & 3¢(p), where »(¢) = (e=2*¢ + 10~ — 2)1/2,
The branch of the root is such that »(0) = 3. The right eigenvectors matrix is

1 ( e~ — 1 —4e7i 4+ 1 )

5() = (r+(¢) T-(9)),

Tde 9 1\ 1—e 4 a(d) —1+ e 4 (o)
the left eigenvectors matrix is
51(¢) = 21( —1+e:§z+%(¢) 46:22: 1 ) _ ( Li(¢) )
w(@) \ —L+e™ —3x(¢) 4de 1 1-(¢)
The first column in S(¢) and, correspondingly, the first row in S~1(¢) correspond to A, (¢), the second ones to

A_(¢). The eigenvalues can be approximated as A (¢) ~ —¢*/72 4+ O(¢°), A_(¢) = —6 + O(¢). Clearly, A, (¢)
corresponds to the physical mode

(38) oo (—0) 0]

and \_(¢) to the spurious one (the same expression with Ay (¢), 71 (&) replaced by A_(¢), 7—(¢)).
In order to speak about the accuracy we need to specify a map II;. For simplicity we use the pointwise map
(T f)F = f(2;), (0 f)F = f(141). Then v(@,IT,) = (L, ¢)T and
1 L [(3+e@—e+u(d) \_( 1+0(¢)
ST (@)v(e, 11y) = 249) ( 34 eI _ eit _ 5(¢) ) = ( L% + 0(¢%) ) .
Using the notation used in Section [] we have & = {0,4}, po = 2, p4 = 0. Thus by Lemma 7.4 the scheme possesses
the 1st order of the truncation error and the optimal error estimate has the form O(h? + h3t).

This result can be also obtained with the help of Proposition without the calculation of eigenvalues. Since
dimKer A(0) = 1, the scheme is simple. By construction, the scheme is exact on linear functions and thus possesses
the truncation error of the first order. Using the fact that det A(¢) = c¢* + O(|#|?), ¢ # 0, by Proposition the
scheme possesses the second order of accuracy and the third order in the long-time simulation. If we additionally
verify that the scheme is not exact on quadratic polynomials, then by Proposition we get that these values are
optimal.

Replacing IT;, by II, it is possible to improve pg and hence the order of the truncation error and the formal order
of accuracy. For this purpose we need to reduce the second component of S~ (¢)v (g, I1;,). We can nullify it if we
put w(¢) = v(¢p)r4(¢) for some v(¢p) € C\ {0} such that v(—¢) = ~(¢) (for example, y(¢) = 1) and get II}, by
Lemma .4 such that v(¢, f[h) = w(¢) in a neighborhood of ¢ = 0. This map is nonlocal; to specify a local map we
need to approximate w(¢). For example, if we put v(¢) = 1, define Py, as (Prf)n,. = (Pnf)n,r = f(hn), and use

Lemma .7 then we get the mapping HE? 3) given by
1 5
(@ Fon = FOoh), (L7 Pyr = F((n+DR) + W2 (nh) + b £ (o). (11.2)

In this case v(¢, Hf’?’)) = (1,e" — ¢2/6 — 5i¢>/18)". The scheme ([LL.1)) possesses the truncation error of order 3

) )

in the sense of Hf’?’ . Doing the same with P;, = II;, we get the mapping 1:[22’3 given by

(2D f)ys = FOR), (2D Flyn = F((n+ DR) + h 0 (0 DR) + 55" (G + 1)),

and thus v(¢, 1:[22’3)) = (1,e(1 — ¢?/6 — i$3/9))T. Approximations of derivatives in ([[1.2) with enough order
yield other suitable mappings.

Now we demonstrate the method of auxiliary mapping with no use of the eigenvectors. We have



Since dimKer L(0) = 1, we will use Algorithm §f. We will use P, defined as (Pof)n.L = (Puf)n,r = f(hn), then
¢ = v(0,P4) = (1,1)T. Substituting a linear function into the scheme we see that the scheme possesses the first
order of the truncation error. Doing the same with a quadratic polynomial we see the optimal value of the order of the

truncation error is equal to 1.
We need to compute f2 = — (e (22/2,11;))o. We have

f? = (ZMz — LIy (2%/2)),, = Zo(Tia)o — Lo(Ily(2°/2))0 — L1 (T (47 /2)) 1
and
LD DI )
The system
(2 )= ()

0 O

s According to the algorithm the value of cp can be set arbitrarily; put co = 0. Now we compute
2= —(er(23/6, H§2’2))) where H(2 %) is prescribed by (2.12) with the coefficients (2 we just found. We have

P=(1 D[R )= ()10 D10 )+ (5)]-
(o o [0 ) e (2] (o)
(5 7)== (k)

a_(0 0
¢ —(0 5/18>+63].

SN
W=
[MIEESIE

has the solution

The system
has the solution

The map Hgf 3) generated by chosen IIj,, P;, and matrices €(2) and ¢®) with ¢, = ¢3 = 0 coincides with ([ 1.2).
Repeat the operation for f4 = — (e (2*/24, H§2’3)))0.

4_ 0 @ 1 O
#= (1 Gae ) v () v (4
_ 0 @ (0 @ (9] -
N )=o) e (5
(0 -1 —1/24 @ [ —1/2 @ [ 1 [ —127/432
(0 0 )K 0 )Ht c12 ) TET L )T erase )
The system L(0)¢®e = f* is inconsistent. Thus P = 2 and @ = 3 are the optimal values of the formal order of
accuracy and of the long-time simulation order.

O o=

1
2

WIHN[= oo =

7N

o=

as  11.2. Arbitrary order DG method
In this subsection we demonstrate Algorithm # on the discontinuous Galerkin method based on the p-th order
polynomials, where p € N. The discontinuous Galerkin method gives a scheme of the form

dt

1
d
Un,£/¢§ ), (x dx_zum /¢5 d$+zuns¢s J¥;(1 Zun 1e9e(1);(0) =
0

£=0
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where ¢¢, £ =0,...,pand ¢;, j =0, ..., p are two bases in the space of polynomials of order p.

In this scheme we can choose the set of basis functions in the polynomial space and the initial local mapping IIj
at our convenience. Let x and wy, be the nodes and weights of the Gauss — Jacobi quadrature rule with p 4+ 1 nodes,
i. e. the quadrature rule on [0, 1] exact on the polynomials of order 2p such that x,, = 1. Let {¢¢(z),z € [0,1],£ =
0,...,p} be the collocation basis with the nodes ¢, i. e. ¢¢(x¢) = 1 for € = ¢ and 0 otherwise. Let the test functions
be ¢;(x) = x7/41,j =0,...,p. Then we have

P
/9755 x)ih(x)de = Zwk¢5 wk) () = wg /éf’s (@)dz =Y wyoe(wr)v(@r) = we G-V
k=0 ’
and ¢¢(1) = 1 for £ = p and 0 otherwise. So the scheme is of the form (2.§), namely,

du
Zo—21 + Louy + L_quy—1 =0,

dt
wo . Wp—1 Wy 0 0 -1
wWoxg ... Wp_1Tp—1 WpTy 0 0 O

Zo = woxrd/2 ... wpaxh (/2 wyxl/2 . L,=]0..00 ’

worh/p! ... wpamy 4 /p! wpah/p! 0 0 0 (11.3)

0 0 1
—wWo . —Wp—1 1—w,

Lo= —wWoTo . —Wp—1Tp—1 1/2 — wpzy

—worh H/(p— 1! ... —wp_iab_ /( Dl 1/p! —wpaE™t/(p — 1)

We equip the scheme with the mapping IIj, defined by (I, f),.e = f(h(n+ x¢)).

The bottom-left (p x p)-submatrix of L(0) = L_; + Ly is the Vandermonde matrix with scaled columns, so it
is nonsingular. Thus dimKer L(0) = 1 and Im L(0) consists of the vectors with the first component equal to zero.
Denote ¢ = (1,...,1)T. We claim that L(0)¢ = 0 and thus Ker L(0) = span{¢}. Indeed, for j = 0 the equality
(L(0)?); = 0 is obvious; for j > 0 we have

1 P i1

(LOR); = 7= > _we gy =0

i &

The scheme is simple (dim Ker L(0) = 1) and we can use Algorithm fl. We choose the mapping P, defined
by (Pnf)ne = f(hn), € = 0,...,p. Step 5 of the algorithm defines the diagonal matrix (™) as a solution of
L(0)e™E = f™, Since L(0)¢ = 0, the general solution of this equation has the form €(™) + oI, a € R, so we will

specify €™ by ¢l") = 0.
Step 1. We need to get the order of the truncation error. We have

™ am-l x™ x™
(0, ), (), 05)
m! 0 (m—=1)"!/, m! ), m! )

Componentwise,

— <el <7x7::,111>)07j = Z(Zo)]yg <Hl(m_i))075 - ;(Lo)j,s (Hl :;:)075 - ;(L_l)j,i (le)_l .

3

For m = 0 this is zero, so assume m > 0. For j = 0 we have

(50, S
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andforyj=1,...,p

-1 m 1

rm SCg Ig x& _m+] j+m—1 1
—(61(m!’ﬂl>) Z weTy wa Dim! jlml ~ jiml wa m+j

Since x¢ and we are nodes and weights of the quadrature rule of order 2p, then

<61(T",Hl>) -0, j4+m—1<2p (11.4)
m: 0,

Since the maximal value for j is p, then the truncation error is zero for m < p 4+ 1. Thus the scheme possesses the
truncation error of order P4 = p + 1. The value P4 = p + 1 is optimal, otherwise the quadrature formula would be
exact on all polynomials of order 2p + 1.

Step2. Putm =Py +1=p+2.

Steps 3, 4. Let ™), n = p+2,...,m — 1 be the coefficients already found by the algorithm by solving

n
() N (61 (x,,HE”“’””» (11.5)
n. 0

for €(™). We claim that the first 2p 4+ 2 — n components of the right-hand side of ([L1.3) are equal to zero. Indeed, for
n = p + 2 this follows from ([L1.4). Assume this holds forall n’ = p+2,...,n — 1. Then

n n n—1 n—1—-n'
(o (), = o (), B e () -
n! 0 n! 0 & (n—1-—n")!
n’/=p+2 0

L Z e < 2/) Z ¢<“)<7)1 )>_1.

n’'=p+2 n’*p+2

Recall that P; takes the point value at z = 0 and @,(ffg = 0 for each n. Thus

fr=- <61 (“7'111)) + Zoe VT,
n: 0

For the first term on the right-hand side the first 2p + 2 — n components are zero (see ([L1.4)). For the second term on
the right-hand side by ([ 1.3)) and etﬁffp) = 0 for each n’ we have

(Zo€" V%) = (~Lo€" VE);40, j=0,....p— 1

So by induction assumption the first 2p + 2 — n components of Zo€(*~D¢ are also zero. Thus the first 2p + 2 — n
components of f™ are equal to zero. In particular, for each m < 2p + 1 there holds fJ* = 0,1i. e. f™ € ImL(0). For
m = 2p + 2 this possibly will not hold (in fact — not possibly but definitely, but we have no proof for this).
Step 5. Put Q" = m — 1. We know that at the last stage m was greater than or equal to 2p + 2, thus Q' > 2p + 1.
Step 6. Since @' > 2p+1> Py =p+1,wehave PP = P, +1=p+2.

Since the algorithm returns Q' > 2p + 1, by Theorem the DG scheme based on p-th order polynomials
possesses the long-time simulation order 2p + 1. This proof can be considered as a variation of the proof in [[15].

11.3. Alternating central difference scheme

In this section we demonstrate Algorithm .

Let the set of the DOFs be M° = {“L”, “R”}, |M°| = 2. We will treat the first DOF as a value in the node and
the second one as a value in the cell center. Correspondingly we define the pointwise map I1;, as (I, f) ;.. = f(jh),
(@) = f(ih+h/2), ] € Z.
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Derivatives at nodes are approximated by the 2-nd order central difference and derivatives at cell centers are
approximated by the 4-th order central difference. For brevity denote (u;)r = vj, (uj)r = vj41/2, then

dvj | Yjt1/2 —Yj-1/2

=0, jeZ
dt h (11.6)
Wiz  Avier —v  1Viasp =V o L,
a3k 3 oh  JEE

wo  In the sense of IIj, the scheme ([[1.6) possesses the second order of truncation error.
The scheme can be rewritten in the block form

du;
7; +L_juj—1 + Louj + Liujyq =0,

(0 ) m= (0 6)e (s D)

The matrix L(¢) = e *®L_; + Lo + €®Ly is

L(6) = 0 1— et B 0 2ie~1*/2 sin(¢/2)
() = S(=1+e?) —g(e?—e) )\ Zie®/?sin(¢/2) —1isin(¢) '

3

The matrix A(¢) defined by (6.14) is

B i¢ —2ie” "2 sin(¢/2)
A9) = ( —8i¢i/2sin(¢/2) ¢+ Lisin(¢) >

The eigenvalues of A(¢) are equal to

Asr(p) =io+ %z sin(¢) + %z sin(¢/2)s(¢), s(p) = /194 + 2cos ¢ > 0.

The eigenvaules Ay (¢) are pure imaginary. For ¢ = 0 there holds A(¢) = 0. For ¢ # 0 there holds Ay (¢) #
A_(¢). Thus for each ¢ the matrix A(¢) has two linearly independent eigenvectors. The matrices of the right and left
eigenvectors are

L1 ([ 2ew(ciof2) 2ew(-iof2) \ g ( expliof2)(<(6) — 2cos(6/2)) 12
S(¢)_4%(q§)(i/\+/sin(¢/2) ix_Jsin(¢/2) ) s 1(¢)_<exp(i¢/2)(%(¢)+2cos(¢/2)) 12 )

For ¢ = 0 we take the corresponding limits. The first column of S(¢) and the first row of S~*(¢) correspond to
A+ (), the second ones to A_(¢).

Since matrices S(¢) and S~!(¢) are bounded uniformly in ¢ € R, this yields || exp(A(¢)v)|| < K forv > 0.
Thus the scheme ([1.€) is stable.

The Taylor expansions of the eigenvalues are

7. 1.
At(9) = §Z¢ +0(¢%), A (¢)= Equ?’ +0(¢%).
The Taylor expansions of the matrix S~1 is

. 9 .12
g-1 :< 12+6.w5—7¢ +... 12)
(¢) 16 4 8ip — 892 + ... 12

Now consider the “block™ map II; defined as

(nf)jr = Unf)jr = f(h).
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Then we have v(¢, I1;,) = (1,1)T and
~ 2
s~ entem) = (o) ).

Thus we get X = {1,3}, p; = 1, ps = 0. By Lemma 7.4 this yields ||}, (t, vo, II1) || < C1h|| Vv ||so +Coth?|| V300 || s
for each vy € C3,,.(R).

Now we demonstrate Algorithm §. Using Algorithm [[] it is easy to check in the sense of II;, the scheme possesses
the truncation error of order P4 = 1 and not of order 2. Since A(0) = 0, by statement 5 of Theorem [] there holds
P = P4 = 1, and we can skip step 1 of the algorithm. Now put P, = II;, and denote ¢ = (1,1)”. Consider the

system
(61( H(l 2))) =0;
(ex(22/2, 10 12% ), =

Since (€1 (2, 111))o = 0 and L(0) = 0, we have (e (z, Hg ' )))0 = (e1(x,T11))o + L(0)€MT = 0, so the first equation
holds for each €(*) and €(?). The second equation has the form

— (0 @) 4L (P @)+ Lo (1 @) + L (1) =0,

-1 0 1

_6(1)<1>+(8 1/16”( 1@)%“)(_})%(%5’%
+( Z(1)/3 0)6(% (4(/)3 ?/6)[( }g>+¢(”(})+¢<2)z}:o.

Since L(0) = L_y + Lo + L1 = 0, the terms with @) negate each other. Simplifying, we obtain the system for
¢ = diag {eV, e}

which expands to

{ —e el — 1=y,
1
dett) - eg; 2 0.

The solution of this system is

e = ( 8 1(/)2 ) +al, (11.7)

and the matrix €?) is arbitrary. For ¢; = 0 and ¢(?) = 0 we obtain the map H( 2) prescribed by (ITj, f ) (1.2) = f(jh),

(12 £), 5 = f(Gh) + (h/2) £/ (jh). Note that 1" f =TT, f + O(h?) for f smooth enough.
Following the algorithm write the system

(61( H(l 3))) 0.
(61 2/2 H(l ‘% )
(61 (23/6, H(l 3) )

for ¢, @) ¢(B), The first equation is valid for each ¢("™). The second one is equivalent to ([[1.7). By Lemma
we can drop the identity term in the expression ([[1.7) for €(!) by putting ¢; = 0. The third one is

(103 b)) e (1) een () e
(Lo D)oo (o) [(th) v () e (1) erd o
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Since L(0) = 0, the terms with €(3) negate each other. Substituting QZ(Ll) =0, ng) = 1/2 and simplifying,
{ B
45002 _ap@ 1 _
3¢, — 3¢ +5=0.

This system is inconsistent. This proves that the values P = 1 and ) = 2 are optimal.

Note that the use of Algorithm § would give the wrong result P’ = @’ = 1. Indeed, following Algorithm f we
write

f?=- (&1 (332/2,H1))0 #0
and f2 ¢ ImL(0) since ImL(0) = {0}.
11.4. Family of schemes with unlimited growth of €

In Theorem [l| for a scheme with the truncation error of order P4 and the formal order of accuracy P = P4 + 1

we proved the existence of HgLP’P) that gives the truncation error of order P with an estimate for €(™), |m| = P.
Theorem [ does not give an analogous estimate on (™). In this section we show that this estimate is not possible
without additional assumptions.

Consider the family of schemes parametrized by v > 0 with 3 DOFs per cell:

du; 1 2 2 1
hditj + (12Uj+2 -+ guj+1 — guj,l + 127.Lj2> + M (Uj+1 — 2’U,j —+ ’Uljfl) — ")/GUJ = 0,
where

0
G=| -1 0 1 , H=1 0 0 1 , M=G+~H.
1

It is of the form (R.§) with the coefficients
Z():I, Lozf"}/G*QM, Lile:tQI/37 L:t2::|:]/12,

where [ is the identity matrix. We will use the mapping II;, given by (I, ), 1 = (I f)n,2 = (Unf)ns = f(nh)
and the Euclidean norm on C3.
The matrix A(¢) for this scheme takes the form

A(¢) =igl — L(¢) =

I .. ) . I )
=il — <—12te¢ + (M +21/3)e'® — 4G — 2M + (M — 2I/3)e™ " + 1262“#) —

=i (d)— %sinqﬂ— ésin2¢) I +4M sin®(¢/2) +7G =

0 Y+g —-Y—9—79
= if(o)] + -v—g 0 Y+g+v9 |,
Y+tg+vg —v—9-79 0

where 4 i
9=9(¢) = 4sin*(¢/2), f(¢) = ¢~ gsing+ £ sin20 = O(¢”).
Since A*(¢) = —A(¢), the scheme is stable with K = 1. We have
U((b, Hh) = (Hleid)x)o == (15 17 1)Ta

1 -1
(0, n) = A(P)v(e, ITn) = if (4) | 1 | +79(8) | 1 |,

[
o
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so by Lemma the optimal value of the order of the truncation error is P4 = 1.
Introduce the function

T+g9+7g
S 9@
w(@)=——1| 7+9+9 —e 90
T+9 Y+g T+9@) \ g

By construction v + g(¢) > « > 0. There holds
lw(¢) — v(e,1In)|| < V29(8) < V2%, [w(e)]| < V3+ V26
Since A(¢)w(¢) = if(Pp)w(¢p), we have
1A@)w(o)l < cloP(V3 + V2¢7)

with ¢ independent of v and ¢. By Lemma B.1| the scheme possesses the 2nd order of accuracy and the 4th order of
the long-time simulation, and the constants in the estimate (R.17) are uniform with respect to .
Now we put P}, = I, and find the values of €™ providing the 4th order of the truncation error in the sense of

H22’4). We have L(0) = —yG and
—(er(2?/2,11))g = —M¢ = —(-1,1,0)T.
By Lemma the diagonal matrix ¢ ghould satisfy —fyGQ:(Q)E’ = —(-1,1, O)T, thus we get

00 0
e =10 0 0 | +ecol,
00 1

where ¢y € R is arbitrary.
For any ¢(?) we have

3 3
(q (Z,H(f’”)) = <e1 <“T6.H1>) ~Zo€® (M 1)+ Y Lye? (), = <Z0+ > nLn> e@e=0
0 0

and the system —yGEB)E = 0 yields €©®) = ¢31, ¢35 € R.

Further,
at 23 ! 2 2 2
(61 (%,Hl’ )) = <61 (24,H1>) — Zo€® (M 1)o + Y Lye® (), + > L,e? <H12> =
0 0 n=—2 n=—2 n
~ et (—zo4 i nL, | €®e 4 i ) ¢@5— L s me@i =
12 K 2 1 12
n=-—2 n=—2
1 -1 -1 -1 13 -1
=357 1 +(1+7) 1 + cay 1 <1+7<12+02)> 1
0 0 0 0

The solution of —yGEWE = — (1 (z*/24, H§2’3)))o is

Looking on the expressions for €(2) and ¢(*) we see that we cannot choose ¢, cs, and ¢, such that €2 and ¢®) are
bounded uniformly in v simultaneously.

Note that since A(0) = —L(0) = G, for each v > 0 the scheme is “simple”. For v = 0 the scheme possesses
the 4th order of accuracy and the 4th order in the long-time simulation, but it is no more “simple”: A(0) = 0.
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12. The bad

The crucial difference between the one-dimensional and multidimensional cases can be seen from the proof of
Lemma P.20. Consider a scheme possessing the formal order of accuracy P and the long-time simulation order Q.
The function W(F>Q) (¢) given by (B.5) can be componentwise represented as a ratio of the two analytical functions.
This ratio is bounded as ¢ — 0 (otherwise the scheme does not possess the orders P and @). In 1D case (and this
remains true for quasi-1D case) this ratio is holomorphic. Then the Taylor expansion for W("?)(¢) by Lemma [5.7

can be transformed to the coefficients of a local map HgP’Q) that gives the Q-th order of the truncation error.

In the multidimensional case the ratio of two holomorphic functions can be bounded but not holomorphic. The
example is f(Gq, y) = dady/(¢2 + dutpy + ¢2). Once the function WP @) (¢) behaves like this, the auxiliary
mapping becomes non-local, see Section [[2.3. Besides, the behavior of the solution error can become surprising.
Particularly, the optimal value of the long-time simulation order can be non-integer, see Section [12.4.

Let P € N be the optimal value of the order of accuracy for the scheme (2.8). If one prescribes e € 0, this leads to
the 1D formulation. By Proposition 8.7 for each e € Q) the Q-th order of the long-time simulation order on 4, _(R%)

per,e
(with g big enough) is equivalent to the existence of HELP(;Q) providing the ()-th order of the truncation error on the
direction e. Here we have the following fork of the possible cases.

1. For some e € € there exist no (‘Sép), e 653@ such that the mapping Hﬁi@ given by (R.12) provides the Q-th
order of the truncation error on e. Then the scheme does not possess the orders P and @). This may hold even

if the resulting system for Q(QP), cee QQQ) is consistent for almost all e € €2, see an example in Section [12.1].
2. For each e € () there exist Q:,(am), m = P,...,Q, such that HgféQ) provides the Q-th order of accuracy on e and

sup ||€((gm) || < oo,m=P,...,Q. Then by Corollary the scheme possesses the formal order of accuracy

ec)
P and long-time simulation order Q. See an example in Section [[2.2.
3. For each e € € there exist Q(QP), e Qng) such that HELP’Q) provides the Q-th order of accuracy on e but

the previous condition does not hold. Let P, @’ be optimal values of the formal order of accuracy and of the
long-time simulation order. Then the following cases are possible.

* Q' > Q. See Section for example.
« P < Q' < Q,and Q' may be not an integer. See Section for example.

Throughout this section we consider the Cauchy problem for the transport equation (2.6), (2.7) in R? with w = 0.
We put a; = (1,0)7, @y = (0,1)7,s0 T = I. On CM" the Euclidean norm will be implied. All the schemes
considered in this section are artificial and not intended to represent any scheme used in practice. They have skew-
Hermitian matrix A(¢) and thus are stable with K’ = 1. Note that w = 0 is not a limitation; to each scheme considered
in this section for the case of nonzero w we can add the central difference approximation of w - Vu of the order high
enough. This will keep A(¢) skew-Hermitian and thus preserve the stability.

12.1. Minus-special direction with respect to the long-time simulation accuracy

The following scheme has the following properties: on C’Ser,e(Rz), is possesses the formal order of accuracy
P =1 and the long-time simulation order () = 1 if e is aligned with the vertical axis, and P = 1, () = 2 otherwise.
L. e. the long-time simulation order degrades if the wave vector is aligned with the vertical axis.

Put M° = {L, R}. Consider the scheme

duj’k
dt

h + Bk — uj—1k) + Wtk — 20k + k1) = 0,

(=12 1)2 [0 -1
E(1/2 _1/2)’ W<1 o)'
It is of the form (R.§) with the coefficients Zoo =1,

Loo=—-2W, Lyig==xFE, Log+1 =W,
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Unspecified coefficients are zero. The mapping IIj, is defined by (Il f)n. = (Unf)nr = f(nih,n2h), so
v(,11,) = ¢ = (1,1)T. The matrix A(¢) = —L(¢) is

B isin ¢y —ising; — 4sin’(py/2)
Aldr,¢2) = ( —isin gy + 4sin®(¢o/2) isin ¢ > ’ (12.1)

We have A(0) = 0 and A(¢)¢ = 4sin*(¢/2)(—1,1)7, thus the optimal values of the truncation error and of the
formal order of accuracy are P4 = P = 1.

We look for the auxiliary mapping H&’j) of the form (2.13):

n2 f =10, f + hég)l’[h% + R2eP1I

,e

0 f
" De
that provides the second order of the truncation error on planar waves aligned with e. Since L(0) = 0, the truncation
error on quadratic polynomials does not depend on 6(62), so it is enough to consider mappings of the form

Hﬁi’el)f =Mnf+ h@eﬂhg—];. (12.2)

On the linear function we have (¢ (e - 7, Hgf)))o = 0 for each €, because L(0) = 0. For the quadratic function the

truncation error is ) )
e-r e- R R
(61 (( 5 ) ,HS{?)) :ZL,,<( 277) e—l—(e-n)cjee) .
0 n

Equating to zero and substituting the values of L,, we get eiW?—&— 2e, E€.¢ = 0. Substituting the values for W and

E we get
-1 1 of =1\
(Yo ()=

For e, # 0 the system is consistent and has the solution

o2
Qfe:—ey<(1) 8>+ceI, ce € R,
xr

while for e, = 0 the system is inconsistent. Thus for each e € Q with e, = 0 the scheme possesses the first order of

accuracy and the second order in the long-time simulation Cgene (R?). The following estimate is valid:

o2

Y h+ 02|O{‘3h2t, C3|Oé|2ht} .

len(t, e ™ II,)|| < min < 2
|ove |

Let us write the explicit expression for the solution error. Denote a = sin ¢1, b = 4sin®(¢2/2), v = a + bi. Then

(12.1)) rewrites as
_ ia —ia—b\ _ .
A(¢)<—ia+b ia >SAS ’
where

1 -1 1 _( ta+iv] 0 1 -1 o/
S_2<v/|v| v/|v>’ A‘( 0 ia—i|v>’ ST=01 el )

ro o T (A P\ g (Explivia+ o) = 1) o/~ 1)
(@ 1) = ( 1) S((exp<w<a|v|>>1><6/|v|+1>>'

Since A(0) = 0, the function &(ah, t/h,1I},) is holomorphic in A (see Section P.1)). Thus it can be expressed using
the Taylor series in h. Omitting the calculations, we get

Then

62



1010

2
S~ (ah)é(ah,t/h,11}) = ify (1 — exp(2itay))h < (1) ) +O(h?), a, >0;
Ay

S~ ah)é(ah,t/h,11},) =i %y (1 — exp(2itay))h (

4o,

0
-1

) +O0(h?), a, <0.

Thus for each o, # 0 the term with h is a bounded function of the time. In contrast, for o, = 0 we have

explwa(@) = ((Sony) ). g = (ST ).

where vb = 4t sin®(a,h/2)/h. It is clear that there is no estimate of the form O(h + h?t) for £(cch, t/h, T1},).

12.2. The case of nonlocal auxiliary mapping
In this section we present a scheme that possesses the first order of accuracy and the second order in the long-time
simulation, however, there is no local mapping of the form (2.12) that gives the second order of the truncation error.
Consider the scheme with three degrees of freedom per cell given by

du,
h djt’k + E(ujrie — uj—1k) + Flujre — win—1) + Wlujri e — v k-1 — tj-1k41 +uj-16-1) =0,
1 0 -1 1 -1 0 0 1 0
E=( 0 -1 1 |,F=| -1 0o 1 |, w=[ -1 0 1
-1 1 0 0 1 -1 0 -1 0
and let I, be given by (I1j, f)y.c = f(n1h,n2h) for each £. This scheme is of the form (R.§) with Zo,0) =1,

Ly, -1y=W, Lo_-1y=-F, Lg_-1)=-W,
Li_100=—-FE, L@o=0, Luog=F,
Li_iy=-W, Lon=F Lupn=W,

(all unspecified coefficients are zero).
We start with the analysis of the truncation error. We have (e1(f,111))o = (LILif)o = >_, Ly(Il1 f)y and

(Ii7™),, = n™¢, where ¢ = (1,1,1)7,
> Lp=0, Y mLy=2E, > nLy=_2F,
n n n
S Ly =0, Y mnLy=4W, > n3L,=0.
n n n

Since E¢ = F'¢ = 0, the scheme possesses the first order of the truncation error; since W¢ # 0, it does not possess the

second order of the truncation error. Since L(0) = 0, by Theorem [l the optimal order of accuracy is equal to P = 1.
Now we consider this scheme on Cger’e(R% for some e € €2. We will look for the auxiliary mapping Hﬁl{’el) given

by (12.2) providing the second order of the truncation error on e. Since the scheme possesses the first order of the
truncation error, we need to consider the function f(r) = (e - )2 /2 only. Write

(1,1) (e : 77)2 - - - -
(el(ﬁ mi; ))0 =3 Ly (5 (e mIEE ) = dege, W+ 2(e B + ¢, F)EE
n

Substituting the expressions for E, F', and W and equating to zero we get

€r + €y —ey —€z 1
—ey —er  eptey | €l = —2e.e, 0
—ey er +ey —ey -1
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The solution of this system is

2e e € 00
Co= — Y4 0 0 1.
e e% + ezey + 65 0 eé/ 0 + Ce

We can put ce = 0. Since €, is bounded in e € Q by Corollary the scheme possesses the first order of accuracy

and the second order in the long-time simulation on C3,,.(R?).
2)

of the form (R.12) providing the second order of the truncation error.

Indeed, since L(0) = 0, the truncation error in the sense of HELM)

Now show that there exists no mapping Hgl’
on quadratic polynomials does not depend on ¢(™)

for each m such that |m| = 2. Thus we need to check mappings H;Ll’l) of the form

(L) _ @ (. 9f ( of
(Hh f)n—(th)n+hQ: )<Hh8x)n+h€y) <Hhay .

Considering f = 2 /2 we get ¢(*) = ¢, withe = (1,0)”. Considering f = y?/2 we get £¥) = €, withe = (0,1)7".
Thus we get €®) = 1, €W = k, I, k,, k, € R. It remains to see that the truncation error on f = xy is equal to

(1,2)

4W h whatever x, and x,. Thus the mapping II; "™ of the form (2.19) providing the second order of the truncation

error does not exist.

12.3. Fake special direction
Let a scheme of the form (R.§) possess the formal order of accuracy P € N and the long-time simulation order

Q €N, Q > P. By Lemma B.7 for each e € () there exist coefficients Qi,(gm), m = P,...,Q such that the scheme

7Q)

possesses the truncation error of order @ in the sense of 1_[( given by (2.13) on e. But it is generally impossible

to define these coefficients such that they satisfy max sup ||(’: )H < 00. To show this, we adapt the example of

ec)
Section [11.4.
Consider the scheme

du 2 2
.77 —
E : E : L7717772uj+7717k+772 =0

with
an:( (2)+C()+C(4))W+(()(2)+c(4))G
0 1 -1 0o 0 -1
W = -1 0 1 , G=[0 o0 1 ’
1 -1 0 1 -1 0
and c,, ™) be the coefficients of (5 — m)-th order finite difference approximations of the m-th derivative on the uniform

mesh with the unit step:
= —5/2; =43, ) =—1/12;
054) = 6; gﬂ = —4; c(f% =1

It is of the form (R.§) with Zy = I, Z,, = 0 for n # 0 and L,, given above. Define 11}, is by (11, f )¢ = f(n1h, n2h)
for each &, so v(¢,I1},) = ¢ = (1,1,1)T. The matrix L(¢) is

L(¢) = (F®(¢2) + FW (1) + FD (2))W + (F (61)F®) (¢2) + F W ()G

where

FM () = Zc“’” exp(in) = ™ + O([y[™*1). (12.3)
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Then

0 —T r+y
Algp) = —L(¢) = x 0 —z-y |,
—r—y x+y 0
where
e = () = FP(¢2) + FD(2) + FU(61), y=y(d) = FP(61)FP(¢2) + F Y (). (124)
For ¢ in a neighborhood of ¢ = 0 introduce the vector
z(d) +y(¢) } e 1 . o —o
@)= | H@ ) | =1 IG L] ero wo=0

Obviously, A(¢p)w(¢) = 0. Using ([2.3) and v(¢,II;,) = (1,1, 1) in a neighborhood of ¢ = 0 we get

1
. F(2)(¢1)F(2)(¢2) +F(4)(¢2) ,
(1) =2 F(2)(¢2) + F(4)(¢2) i F(4)(¢1) < 2|9)”.

(@) — v(b, )| = ]iﬁ‘f;i\

By Lemma B.1| the scheme possesses the second order of accuracy and the infinite order in the long-time simulation.
These values are not optimal (||é(¢, I11,)|| ~ v/2|y(¢)| = O(|¢|*), so the optimal value of the solution error is equal
to 3) but the scheme may be easily modified by adding a disjoint spurious component that will decrease the formal
order of accuracy.

Proposition 12.1. Let {Ql(em), m=2,...,9,e € Q} be a set of diagonal matrices such that for each e € Q the
scheme possesses the truncation error of order 9 on the direction e in the sense of ngf) given by (2.13)). Then

| max sup e =
=2, 9&6(2

Proof. Assume the converse, then for each e = (e1,¢e5) € Q) for the function

we(¥) = v(ve, I <I+ > ymelm )

m=2

in a neighborhood of ¢ = 0 there holds

[A(e)we ()| < celth|™,  [[v(ew, TTn) — we ()] < celth?, (12.5)
"We )| < oo 12.6)
g o | 0] < <

The eigenvalues of A(¢) are 0 and +i(2% 4 2(z +y)?)"/? where z and y are given by ([2.4). The last two eigenvalues
satisfy |\| > |¢|*/2 in a neighborhood of ¢ = 0. Thus the inequality || A(e1)we ()| = O(]1|'?) is possible only if
there exists Ye(¢0) > 0 such that we (1) = e (1)w(ey) + O(|1|°). Taking ¢ = 0 we get 7.(0) = 1. This means that
for ¢ = e we have

1 1
we®) = 7o) [ 1|+ 22DED ) L o). (12.7)
1 $(6¢) 0

By assumption d™w, /di)" (0) is bounded in e forn = 0, .. . , 4. Taking the last component of ([[2.7) we see that this
also holds for the derivatives of 7. (¢); thus this holds for the derivatives of v (¢)y(e)/x(e) and y(ey)/x(ew).
But the Taylor expansion

y(er,es) ~ 7/14 5 _ ¢2
w(ber,bea) - GPA+ 01— 238) ¢ 14 0R(ey” — 26D)

shows that the 4-th derivative by % of this expression is of order e; 2. This contradiction proves the proposition. [
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Note that there exist no mapping Hf’g) that gives the 9-th order of the truncation error. Assuming the con-

verse we get that U(¢,H§f’9)) is a holomorphic function satisfying ||v(qb,H§f’9)) —v(e,I1)|| = O(|¢|?) and
A(qb)v(qb,Hgf’g)) = O(|¢|'°). Thus we(v)) = v(ew,Hf’g)) satisfies ([2.3) and ([12.6), which leads to the same

contradiction as above.

12.4. Strange special direction

In this section we consider a family of schemes with the following properties. The optimal value of the order of
accuracy is equal to P = 1. For some ¢ € N and each e € () there exist diagonal matrices Qlém), m=1,...,q,
such that the scheme possesses the truncation error of order ¢ in the sense of Hg:;f) on the direction e. However, the
scheme does not possess the formal order P and the long-time simulation order ¢. For instance, the optimal value )

of the long-time simulation order may be equal to ¢ — 1 or ¢ — 1/2.

Prior to construct the schemes we prove the following lemma. Denote RY = {(z1,...,24) : 1,...,24 > 0}
and forz,y € R% puta¥ = 2" - ... - 2%
Lemma 12.2. Letm,n; € Ri, 7 =1,..., N. The following statements are equivalent.

1. The ratio of ™ and Y ¢™ is bounded on [0, 1]¢;

J
2. There exist 01,...,0n = 0withy_ 0; = 1 such that ) 6;n; < m.

Proof. Assume the second statement. Then for each ¢ € [0, 1]¢ there holds

N

N
¢m <=0 =[] (@m)" <D _¢™.

j=1 j=1

The last inequality is due to the Young inequality. Thus we get the first statement.
Assume the first statement. Let g € Ri. Put ¢ = e, ..., ¢4 = €9 and send ¢ to zero. Since ¢p™ = 9™ and

Sopmi = Z 9™ we get
j

j
g-m > min{q-n,}. (12.8)
J

Assume that the second statement does not hold. Let M = Conv{n;} + R% where the plus sign means the
Minkowski addition. Obviously, M is convex and m ¢ M. By the hyperplane separation theorem there exists
g € R? such that there holds ¢ - @ > C > q - m for each @ € M. Therefore

min{g -n;} >C > q-m. (12.9)
J

It remains to see that q € Ri. Assume the converse, i. e. g < 0 for some k. Let a € M. Consider the sequence
_ T
a=a-+10,...,1,...,0)",

where unit stays in the k-th position. This vector belongs to M by construction, but q - a; — —oo and thus can’t
be greater than C for each [. This contradiction proves that ¢ € R%. So (12.9) contradicts ([[2.§), which proves the
lemma. O

Now we construct the schemes. Put M/ = {1, 2,3, 4} and consider the schemes of the form (2.§) with the coeffi-
cients Zo = I,
L, = cg?)c,(?f)W + cfﬂ)cg‘?E + c%ll)R7

where «, 3, v are odd natural numbers and ¢ is an even natural number,

0 1 -1 0 10 0 O 0 0 0 O

1 0 1 0 00 0 O 0 0 0O
W= 1 -1 0 0]’ E= 00 -1 0 |’ R= 00 0 0|’

o 0 0 O 00 0 O 0 0 01
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and c£{"> are the coefficients of high-order finite difference approximations for the m-th derivative on the uniform

mesh with the unit step such that c(TZ) = (—1)mc$,m). The order of the approximation should be not less than

max{a, 8,7,0} + 1 — m. For example, fora =5, 3 =y =1, § = 8 we can put
) =+a/5 ) =715 1) =+4/105; ) = F1/280;
P) =429/6; ) =F13/3; ) ==+3/2; ) =F1/6;
c(()S) =70; cg = —506; (8) = 28; cf% = —8; c(fi =1
(unspecified coefficients are zeros). The mapping 11}, is defined by

(0 fne = fh), €=1,.3: (Wflns=h (mh)

sov(¢p, 1) = (1,1,1,i¢,)T. The matrix A(¢p) = —L(g) is

A(@) = [(@)W —ig(¢)E — iF D (¢,)R, (12.10)
where
f(p) = iR (9 )FP) (¢,),  g(¢) =7 FD (6,)F (gy), (12.11)
and
FI W) = (™ Do ef expliny) = 47" + Oy 071%),

Since (A(¢))* = —(A(¢)) the scheme is stable. Note that i*T#+2 = 41 and i77~! = +1. By construction
F)(4)), f(¢), and g(¢p) are real-valued for real-valued ¢ and ¢.
Determine the order of the truncation error first. We have

&, ) = A(@)v(,I1,) = (—ig(eh),0,ig(9), da F V()7

By assumption y + & > 3, then é(¢, I11,) < c|¢|? and the scheme possesses the truncation error of the order Py = 1.
Since the last component is of the second order as ¢, — 0, the value P4 = 1 is optimal. Since A(0) = 0, by
Theorem [If the optimal value of the order of accuracy is P = 1.

The optimal value of the long-time simulation order will be obtained with the use of Theorem B.3. Since
A*(¢p) = —A(¢), the functional F(¢) defined by (B.9) can be rewritten as

F(6) = 917 (6, 11))" (A"(6)A(9) + 9@*17)) " &g, 1)

Denote by A(¢,, ¢,) the restriction of A(¢,, ¢, ) to the first three components. Taking into account that P = 1 we
get

1

_ —2 2 . * 20\ 1 |¢m|2 ‘F(l)(¢m)|2
F6) = 92000 (1,01 (£ @A) 11979 (0 )+ e

The last term (corresponding to the last component of the solution error) is bounded for each ). Now write

—ig f —f @ +2f* ifg—-f* —f?
A=Ap)= —f 0 f |, AA=-A=| —igf—f? 2f2 —igf —f* |,
o —f g —f? igf —f* g +2f?

where f = f(¢) and g = g(¢) are defined by (12.11)). Now see that (1,0, —1)7 is a right eigenvector of A*A
corresponding to the eigenvalue 3 f2 + ¢2. Thus

F(o) = 260|232 + ¢* + |¢*?) "'+ < bounded term > .
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Figure 4: Illustration to the example of Section

The optimal value of the long-time simulation order is the highest value @ such that F(¢) is bounded at ¢ = 0,
i. e. there exist ¢ > 0 and a neighborhood of ¢ = 0 such that

Je i (9(9)) <ol B(f(#)” + (9()” + |o*?).
Now we substitute the expressions ([[2.11]) for f(¢) and g(¢). Obviously, replacing a function F(") (¢;) by ¢} does
not affect the condition to check. The multiplier 3 can be omitted also. Thus we need to check that

et 9N <02+ o) (0202 + 6203) + (62 + 63)97.

The expression (¢2 4 ¢2)9T! is equivalent to |¢,[2? T2 + [, +2. The term (¢2 + ¢2)$27¢2° does not affect the
condition to check. Thus we get

Je: 922 < c[aﬁi‘)‘”fbiﬁ + @22t p2RH2 ¢§Q+2] (12.12)

We need the biggest value of () for which this condition is satisfied. Use Lemma to find it. At the left-hand
side we have ¢, where m = (2, 20). At the right-hand side we have Z?Zl @™, where

ny = (2a+2,28), no=(20,28+2), n3=(2Q+2,0), ng=(0,2+2Q).

We have four possible cases here.

A v+d<a+p+1 Then@Q = v+ J — 1, 1. e. the long-time simulation order is defined by the truncation error
for the first three components of the solution.

(B) y>aandd > S,and v+ 6 > a+ (. Then Q = oco.
O vy<a,y+dza+B+1.ThenQ=0+a(d—F—-1)/(a—7).
D) d<By+d>a+B+1.ThenQ=a+B(y—a—1)/(8-9).

In Fig. H(a) for a fixed pair (c, B) the zones for (2, 2§) corresponding to the cases (A), (B), (C), and (D) are
plotted. In Fig. H(b) for the case (C) we illustrate the location of m and n;. For example, fora = 5, 8 = v = 1,
d = 8 the optimal value for Q can be found from the condition that the points (10, 4), (2, 16), and (0, 2Q) + 2) can be
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weo  connected by a straight line. Thus we get ) = 17/2. The solution error possesses the estimate O(h + th'7/ %), and
the values P = 1, Q = 17/2 are optimal.

Compare this result with the accuracy on C,,. .(R?) for a fixed e. If e = (+1,0) or e = (0, %1) the first three
components of the solution error are zero. Otherwise we can write ¢, = €19 and ¢,, = e21), and the criterion ([12.12)
reduces to

Je o P20 L ofyRletBiD) 4 ¢2Q+2]

So in the case (A) we still have @ = v + § — 1. But in the cases (B), (C), (D) we have Q = oo, i. e. the scheme
possesses the error estimate

len(t, vo, )|l < Ci(e)h|[ Vol (12.13)
on Cl,, .(R?) for each e € Q.
1065 This example also reveals the difference between the long-time simulation accuracy in the strong sense and in the

weak sense. To show this, we need an estimate for the multiplier Cy (e) in (12.13). Theorem B.§ does not provide this
estimate (one can obtain an estimate for C (e) this way, but this is difficult due to the need of explicit control of the
neighborhood of ¢ = 0 where intermediate estimates are valid). We will use the direct spectral analysis instead.

Nowweputa=3,8=vy=1,6 =8.

The equation for the last component of the solution is separate from others, so we will consider only the first three
components. The eigenvalues of A(¢) are +ir and 0 where r = /32 + g2 with f = f(¢) and g = g(¢) given by
(12.11)). If f = g = 0, then A = 0 and the error is exactly zero; below assume 7 # 0. We don’t need to provide an
explicit expression of the eigenvectors; it is enough to see that

where
—ig T f 0 —f—ig 2r 0 0
1 —f 0 f+ig 0 | —f@f+ig)/r f+ig O 0
S(d)) - ; f —r f 0 ) M(d)) - 0 0 0 0 )
0 0 0 r 0 0 0 —iFM(g,)
r(f +1ig) —2fr r(f +1ig) 0
slg) = L | f@f+ig) —f(f+ig) ifg—g*—f* 0
2 rf r(f —ig) rf 0
0 0 0 r2

Obviously, ||S(¢)|| < &, [|S71(#)|| < ¢ where ¢ does not depend on ¢, and by stability for each v > 0 there
holds || exp(vM(¢))|| < [|S()I| | exp(vA())]| [[S(#)]| < &. Then

&1 0y) = (49— 1) v(@, L) = S(9) (@) — 1) S (§)u(@, ).

Denote by || - ||j1,2) and by || - ||[1,2,3 the seminorms on C* defined as ||(a,b,c,d)” |12y = +/|al> + [b[?, and
[(a;b,c,d)"||11,2,30 = v/]al? + [b]?> + |c[?. Then
2ig/r
-1 _ | Gfg—g?)/r? -1 _\/2—_‘2@< lgl
s @@t = | (97N LIS @)uo. m) luy = VT I P < VB,
o

r

Jé(6 1) 2 < 15(9)] (1 +sup e”M<¢>nu,2]> 157 @)@, T) oy < VB +) 2
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Neglecting high order terms we can write f = i*T#+2¢2 ¢ and g ~ i7"~ !¢ ¢J and, for the chosen parameters,
f=—¢3¢, and g = ¢,¢}. Thus

o N - 1 K 23 o KN 1]
(Gal?+ 1057~ [0l [0al® + [0y [7 s “I6al
Letvyg € a3

.(R?), Ny be its period. Then w = II;vo has the period No/h, so its Fourier series F'[w](¢) may be
nonzero only for ¢ = 2rkh/Ny, k € (ZN[—Ny/(2h), No/(2h)))?, see (b.1)). For such ¢, we have either ¢, = 0 or

1€(, v, 1Tn)|[[1,2,3) < ¢ |p[%/2. (12.14)

= — g; k
|¢L| |k1‘ | 2| 27Th|¢y|
If ¢, # 0, (12.14) yields
(e, v, 1) || 11,2,3) < 07|¢>|7/2 \/—h|¢>|3 (12.15)

If ¢, = 0 then A(¢p) = 0 and ([12.19) also holds. Adding the disjoined component, we finally obtain

1E(, v, TIn)|| < eNoh™@]* + 2|

Note that H.,.(R?) CC Cpe,(R?), so ITj, is well defined on Hj, (R?) and is a bounded homogeneous mapping
of H3 (R?) to Vjer. Let Fy, be the operator that takes vy € H3,,.(R?) to Fjug = ep(t,vo,11,). By Lemma 6.9 we
have || Fj,||(3,n) < 2||1I1||(3,n)- Thus the conditions of Lemma are satisfied with p(|a|) = cNoh?|a|® + 2h|a.
For each vy € ngr (R?) w1th period Ny Lemma .14 yields

llen (t, v, ) | = | Ewwoll < C (R Vool + Noh?|[VPvol)).

This means that the scheme possesses the first formal order of accuracy and the infinite long-time simulation order on
H3,,.(R?) in sense of T, in the weak sense.

Note that the set of values « = 3, 8 = v = 1, § = 8 falls in the case (C) and the optimal values of the formal order
of accuracy and of the long-time simulation order in the strong sense are P = 1, () = 10.

13. Order of accuracy depending on the transport velocity

Up to this point, we studied properties of a fixed scheme (R.8) for the transport equation (2.6) with a fixed the
transport velocity w in (B.6). In this section we assume that the scheme coefficients linearly depend on w = (wy,wy),
which is constant in space and time.

Consider the following scheme with three degrees of freedom per cell:

Uj k41 — Uj k-1

3k 4o Mt LE U1k
X

+w + wo F (U k41 — 205 5 + U5 p—1) + wyGujp =0,

dt 2 Y 2
0 0 1 0 -1 0
F=( 0 0 -1 |, G=|1 0 0
-1 1 0 0 0 0

It is of the form (:8) with L, = L{" w, + L w,, where
Zoo =1L g =+1/2,L{",, = F.L{) = —2F, L), = £1/2,L{) = G,
and other coefficients are zero. Let I}, be given by

s = o = W0 E ). (W) = Fln).
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Then v(¢, 1) = (67, ¢7,1)" and A(¢) = igp - w — L(@) is

0 Wy W:cg((by)
A(P) = iwy (P — sin ¢y )1 + iwy (P, — sin gy )T + —wy 0 —wzg(dy) |,
_Wzg(¢y) ng(¢y) 0

where g(¢,) = 4sin’(¢,/2). Since (A(¢))* = —A(¢), the scheme is stable with the stability constant K = 1 for
each w. We have
¢z 1
€(@,111) = i [we(Pz — sin¢y) +wy(Py — sing,)] o2 |+ [qusi + 4w, Sin2(¢y/2)] -1
1 0

Thus for w # 0 we have é(¢,11;) = O(|¢|?) and the optimal value of the truncation error is P4 = 1.
Now we use Theorem [l| to obtain the order of the solution error. We have

(2%/2) (g ) = (=1, =1,m2/2)",
(Hlxy)(nm,ﬂy) = (070777:17777,/)T
(H1y2/2)(nm,ny) = (07 0, ﬂZ/Q)T,

)

SO
(e1(2?/2,10p))o = —w, G(~1,-1,0)" = w,(~1,1,0)7,
0,

(e1(wy,Up))o =
(e1(y%/2,111))0 = we F (0,0, )T = w,(—1,1,0)7.

Note that L(0) = w,G. If w, # 0, then all the vectors (€1 (z%/2,113))o, (€1(zy, IIn))o, (e1(y*/2,114))0 belong to
the image of L(0) and thus by Theorem |l| the scheme possesses the second order of accuracy. For w, = 0, w, # 0
the vector (€1 (y?/2,111,))o does not belong to Im L(0) = {0}, thus the scheme does not possess the second order of
accuracy.

14. Conclusion

The Lax — Ryabeknii theorem states that a stable scheme possessing the truncation error O(h4) provides the
solution error with an estimate O(ht). For the classical finite-difference schemes these estimates are optimal,
however, for some schemes they can be very rough. The method of auxiliary mapping is a powerful tool to obtain
better estimates, which was successfully used for the DG scheme by several authors. However, up to now this method
has been applied on ad hoc basis.

We consider a linear Lo-stable scheme with several degrees of freedom per cell on a uniform mesh and a local
mapping II; to the mesh space. Based on the method of auxiliary mapping we present a unified approach to find the
largest possible P and, for this P, the largest possible () such that the scheme possesses a solution error estimate of
the form O(h* + th?). The outline of our results is below.

To analyze the accuracy of the scheme one first finds the optimal order P4 of the truncation error. The optimal value
P of the formal order of accuracy can be either P4 or P4 + 1. To check which of these two cases holds, one considers

auxiliary mappings H;LPAH’PAH) of the form (2.12) with undetermined coefficients €(™). The condition that the

truncation error is of order P4 + 1 in the sense of HEIPAH’PAH) forms linear systems for €™, jm| = P4 + 1. The
scheme possesses the order of accuracy P = P4 + 1 if and only if each of these systems is consistent, see Algorithm
for details. Below we assume that P > 0.

For a quasi-1D or a “simple” scheme (see Definitions [ and [7), the optimal value of @ in an estimate of the
form O(h” + th@) is an integer (or it can be infinity, if the transport velocity is zero). In order to check whether

the scheme possesses this estimate, one considers auxiliary mappings HgP’Q) of the form (2.12) with undetermined

coefficients €(™). The condition that the truncation error is of order @ in the sense of H;LP’Q) forms a linear system

for €(™), P < |m| < Q. If this system is consistent, then the scheme possesses a solution error estimate of the form
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O(hY +th®?), otherwise it does not. See Algorithm f§ for details. For “simple” schemes the diagonal matrices ¢lm)
can be found successively, and thus Algorithm [8 simplifies to Algorithm {.

If a scheme is neither quasi-1D nor simple, the situation may be tricky. The definitions of the long-time simulation
order in the weak and strong sense, namely Definition B and Definition H, are not equivalent to each other. The
optimal value of the long-time simulation order @ (with the formal order P) in the sense of Definition [ is generally
not a natural number. If the scheme possesses the formal order of accuracy P and the long-time simulation order )
in the sense of Definition i, then there exists a homogeneous mapping IT;, such that ||TT;, f — II;, f|| = O(h”) and the
scheme possesses the truncation error of order () in the sense of II;,. However, even if () is a natural number, there can
be no such local mapping and thus Algorithm P generally fails. A general criterion of the (-th order in the long-time
simulation is given by Theorem .3, however we do not have an algorithm to check it.

In the general case one can specify a unit vector e and restrict the analysis to solutions of the form f(¢, e - ) and
write a system for diagonal matrices ngm), m = P,...,(Q, such that the scheme possesses the long-time simulation
order @ in the sense of the mapping H,(ap’Q) of the form (R.13). If these matrices are bounded over e on the unit sphere
then the scheme possesses the long-time simulation order Q). If for some e € Q) these matrices do not exist then the
scheme does not possess the long-time simulation order ). If these matrices exist but there is no way to specify them
boundedly over the unit sphere then this tells us nothing.

All cases and methods mentioned above were demonstrated on the artificial examples of numerical schemes.

A. Appendix
Lemma A.1. Letn € NU {0} and w € H”.,.(R?). Then the values |V™w||? defined by (£.2) and (£.9) coincide.

per

Proof. Letw € H)'. (R?) have the Fourier series (2.4). For a multiindex n = (n1,...,nq4), |n| = n, the Fourier
coefficients for the function D™w are equal to (ic;)™ ... (icg)"“we. Hence, by Parseval’s identity

[D™wl = 3 Jon ™ o™ fwa
acA
Multiply this by n!/n! and take the sum over all multiindexes n such that || = n. We have

|
Vil = 3 lwal? Y0 Efad]M e =

acA n120,...,ng>0,
ni+...+ng=n

= Z lwa|? (af +...+ad)" = Z |wa|?|ce*™.

acA acA

The proof of the lemma is complete. O

Lemma A.2. For e € ) the spaces H (RY) and C4,, (R?) are infinite dimensional for each g € N U {0}.

per,e per,e

Proof. By definition there exists A > 0 such that \e - a; = n;/d;, where n; € Zandd; € N, forall j =1,...,d.
Consider m € Z, the functions g(x) = exp(2mimAz) and f(r) = g(e - r). Then we have

f(r+ Noa;) =g(e-r+e-a;jNy) = g(e-r)exp2mimie - a;Ny) = f(r) exp(2mimAe - a;No).
Assuming Ny = [];d; we get f(r + Noa;) = f(r) for each j = 1,...,d, then Ny is a period of f. Hence,
f € Cger,e(Rd) C Hpqer,e(Rd)' O
Lemma A.3. Let G be a bounded domain in R®. For each function f € Lo per (Rd) with period Ny and each h such
that 1/h € N there holds
1

Y= (No/h)d Z /|f (hr + hTm)|* dr < C||f|? Al
0 716{0-,--~7N0/h71}dG

with C' > 0 independent of f, Ny, h.
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Proof. Let O be the parallelepiped generated by vectors Ngaq, ..., Ngpayg and O; be the parallelepiped generated by
the vectors aq, . .., aq. If G is a translation of OJ; then we have

W > /If (hr + hTm)[? dr—*/lf )*dr =[5 | £]

n€{0,...,No/h—1} &
Since G is bounded, G belongs to the union of 7 € N translations of O;. Then (A.1]) holds with C' = m|0;|. 0
Lemma A.4. 4 local mapping with kernel i € (W3 (G))* is a bounded homogeneous mapping of H,, (RY) to Vper-
Proof. We need to show that for a local mapping II;, with . € (W3(G))* the norm ||11,]| = sup ||TIn f[| /]| f|l(g,n) is
bounded. First equip W (G) with the norm
13y = 3 2k / D™ f ()P

|m|<q

Let f € H
CM” we get

4..(R?) have a period No. Put N = Ny/h. By the norm equivalence on the finite-dimensional space

1 1
M fl? = w2 D I@hal<Cx > D M f)nel”.

ne{0,.... N—1}d n€{0,...N—1}4 £eMP

The value of (Il f)n¢ results from the application of the functional pe € (W (G))* to the function
g(r) = f(h(r +Tm)) so [(Inf)n.el < el lgllwg(c)- Thus

2
1 m
0717 < %) (ang el ) 02 P> 3wl / (D™ )i+ T dr =
ne

SN—1}4 |m|<q

2
m my: m
= o (gg;onugn) S ey (),

|m|<q

where Y is given by (A.1). By Lemma [A.3 we get

~ mllmt ~
iz < 3 w2 P om e — a2,

lm|<q
thus ||Hh|| (g,h) S C < 00. U
Lemma A.5. Let {(e1-7)™,..., (e r)™} be a complete system in the space of homogeneous polynomials of order
m. Then {(e1 - 7)™, ..., (ey - 7)™} is a complete system in the space of homogeneous polynomials of order n < m.

Proof. For m = n this is obvious. If m > n choose any ey € 2. Let u be a homogeneous polynomial of order
n. Then there exists a homogeneous polynomial U of order m such that u = (eq - V)™ "U. For instance, one can

J
construct U using an (m — n)-th primitive of u(t(eg - r)eg +r — (eg - 7)eg). By assumption U = ) Uj(e; - r)™,
i=1
thus

J
u(r) =) Ujleo- V)" "(ej - 1)" = T ZU (eo-€;)" "(ej-7)"

i=1 =
Thus uw € span{(e; - )", j =1,...,J}. O
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LemmaA.6. Letn,d € N, Qg be the unit sphere in R¢ and Cybean open cone in R%. Then there exists a set of vectors
{er €QNCy k=1,.. C’d+d 1} such that {(ey, - )"} form a basis in the space of homogeneous polynomials of
order n of d variables.

Proof. First prove that there exists a set of vectors {e; € Q4N Cok=1,...,0%} r+a—1) such that {(e, - 7)"} form
a basis in the space of homogeneous polynomials of order n of d variables.

Assume without loss that (1,0,...,0) € Cy.

The proof'is by induction in d. For d = 1 the statement is obvious. Let us prove this ford = 2. Letk € {0,...,n}.
Leta = (v, . - ., @) be a set of pairwise different numbers. Find v = (v, . . ., ¥») such that

n
zFynF = Z v (@ + a;y)".
j=0
This is equivalent to the system of equations

Zvja = ln k, l=0,...,n.

This is a system of linear equations for ~; with the Wandermond determinant and for any set of pairwise different o;
this system has a unique solution. Thus for d = 2 and any system of vectors e; = (1, a;), j = 0,...,n with pairwise
different o; the polynomials (e; - 7)™ form a basis in the space of homogeneous polynomials of order n. Clearly we
can choose « so that the vectors (1, a;) belong to Cy.

Now let the statement hold for the space dimension d > 2, we will prove it for d + 1. Let {e; € Qq4, j =

C’ff Jﬂli 1} be the set of vectors given by the induction assumption. Let {g;,j = 1,...,d + 1} be the standard

ba51s in R, For r € R¥! denote r = (1,74, 1), 7' € R

Using the argument for d = 2, given any set of pairwise different numbers «;, j = 0,...,n, we can find ~y 5,
k,j7=0,...,n,such that

(r' - e (ra)" Z’ykj (r' - €)+ajra)", €,r' €RY rgq €R.
7=0
By the induction assumption and Lemma [A.3, for any multiindex k = (k1, ..., kq) with |k| = k we can find coeffi-
cients B, =1,...,J where J = Cd+3l 1> such that

J
= Brar et
=1

and thus

()" (ras)"” ZﬂklZ%g (r'-e) + ojra)"
j=
So for any set of pairwise different numbers {«; }}L:O, for the system of vectors

=(1+a3) (e, ) R, 1=1,...,0L , j=0,...n,

the set of polynomials (e; ; - 7)™ forms a complete system in the space of homogeneous polynomials of order 7 in
d + 1 variables. By construction all these vectors have the form ¢(1, o;,, ..., i, ), i € {0,...,n}, t > 0. Choosing
sufficiently small o we can guarantee that these vectors belong to 24,1 N Ca. Extracting a basis from this complete
system we prove the induction statement.

Now let us show that we can find the required system of vectors in Qd N é’d. Lete; € Q4N C’d, l=1,.. CZ +é 1
be the output of the argument above. It is clear that any set of vectors sufficiently close to a basis also form a basis.
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Given € > 0, for each e; we find a vector g; € Q7 such that |[U~'e; — gi|| < e. Then |le; — Ugi|| < ¢||U], thus
Ugill = 1] = [lUgull = lle:l[] < ]|U]| and

er — 10| < llew ~ Ul + [t = 72| = e — Ul + 1l - 11 < 2101

‘ HUQ | H [[Tgll

Thus for sufficienty small & > 0 the system Ug; /||Ugy|| is the required set of vectors in 2 N Cy. O
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