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Abstract

We consider linear schemes with several degrees of freedom for the transport equation on uniform meshes. For these
schemes the solution error is O(hp + thq), where p is equal to or greater by one than the order of the truncation error
and q ⩾ p. We prove the existence of a mapping of smooth functions on the mesh space providing the q­th order of
the truncation error and deviating from the standard mapping (L2­projection for example) by O(hp). In 1D case this
mapping can be found in the class of local mappings. In more dimensions the existence of a local mapping with such
properties is guaranteed only under additional assumptions.
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1. Introduction

The simplest approach to establish an estimate for the solution error of a numerical method is the analysis of the
truncation error. A stable scheme possessing the truncation error of order PA gives the solution with the error of the
same order. But this estimate can be very far from optimal. For instance, the DG(k) method (discontinuous Galerkin
method based on the polynomials of order k) on the uniform meshes has the truncation error of order max{k, 1}, while
the numerical solution of the Cauchy problem for the model transport equation ∂v/∂t+ ∂v/∂x = 0 obtained by this
scheme possesses an error estimate of the form

∥εh(t)∥2 ⩽ C1h
k+1 + C2h

2k+1t. (1.1)

The comparison of the solution error by the 5­th order finite­difference scheme and the DG(4) method of the same order
of accuracy is presented in Fig. 1. The estimate (1.1) follows directly from the results of [1] based on negative norm
estimates which essentially use the finite­element nature of the DG scheme. We will consider another two methods
that can be used to obtain such estimates.5

The spectral analysis is a classical approach to study linear difference schemes (both semi­discrete and fully dis­
crete) with constant coefficients on uniform meshes under periodic boundary conditions. In the case of 1 DOF per
cell a wide range of its applications can be found in [2]. This method was successfully applied also for the schemes
with several DOFs. For the DG method it was used in [3, 4, 5, 6], for the spectral difference method in [7, 8], for
the flux reconstruction method (the class including the first two) in [9, 10], etc. Although the main application of the10

spectral analysis is to ensure stability, it can be applied for the accuracy analysis also. Lowrie [3] used it to understand
the enhanced accuracy of DG(k) for k = 1, 2, 3, but details were not presented. In [5] the estimate (1.1) was proved
for DG(1). In [6] this was proved for DG(2) and DG(3) using symbolic computations. To find the spectrum, one
needs to find the roots of the polynomial of order m = k + 1 with the coefficients depending on the wave number.
If m > 4, it is not generally solvable by radicals. Thus the authors of [6] could not extend their analysis to k > 3.15

Note also the papers [11, 12] where the spectral analysis was combined with the finite­element technique to prove
∥εh(t)∥2 ⩽ C1h

k+1 + C2h
k+3/2t for DG(k), k ⩾ 1, on non­uniform meshes.
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Figure 1: The L2 norm of the solution error of ∂v/∂t+ ∂v/∂x = 0, v0 = sin(2πx) obtained by the 5th order finite­difference scheme (left) and
the DG(4) method (right)

The error estimate (1.1) for DG(k), k ∈ N, was obtained by another approach which we call the method of auxiliary
mapping. LetΠh be an operator prescribing the initial data for the discrete (or semidiscrete) problem, i. e. taking each
f to a mesh function fh. In the case of DG(k), a mesh function is a piecewise polynomial of order k, and the operator20

Πh is the L2­projection onto the space of mesh functions. The idea of the method is to introduce a new mapping Π̃h

such that for a sufficiently smooth function f there holds

(A1) ∥Π̃hf −Πhf∥2 ⩽ C0h
P ;

(A2) the scheme possesses the truncation error of order Q ⩾ P in the sense of Π̃h.

By stability these properties guarantee (see Proposition 4.2) that in the sense of Πh the solution error possesses an
estimate of the form

∥εh(t)∥2 ⩽ C1h
P + C2h

Qt, Q ⩾ P > 0. (1.2)

For the standard Galerkin method for elliptic and parabolic problems, the auxiliary mapping is usually chosen as the25

Ritz projection.
The first application of the method of auxiliary mapping to the DG scheme for the transport equation is also due to

Lowrie for k = 1 (see formulas (5.81) and (5.82) in [3]). In [13] the estimate (1.2) was proved for an arbitrary k and
P = Q = k+1 using the Gauss–Radau projection. In [14] the estimate ∥εh(t)∥2 ⩽ C1h

k+1+C2h
k+2t2 was proved.

Finally, the optimal result (1.1) was obtained in [15]. On a uniform mesh the auxiliary mapping Π(P,Q)
h introduced in

[15] takes each f ∈WQ+1
2,loc (R) to the mesh function Π

(P,Q)
h f defined on each cell η ∈ Z by

(
Π

(P,Q)
h f

)
η
= (Πhf)η +

Q∑
m=P

hm
(
P(m)
h

(
dmf

dxm

))
η

, (1.3)

where (Πhf)η and (Π
(P,Q)
h f)η are the polynomials at cell η, and P(m)

h are some linear mappings to the mesh space.
The difference between the modified mapping and the original mapping (the last term in (1.3)) is called a correction
function (in [15]) or a corrector (in [16]). Note that estimate (1.1) is valid for arbitrary non­uniform meshes (assuming
h = hmax), but this is a specific feature of the DG method. Further results in the accuracy of the DG method were30

obtained in [17] (2D), [18, 19, 20] (variable coefficients), [21] (energy­conserving DG), Runge –Kutta time integration
[22] etc.

Estimates of the form (1.2) with some P andQ, whereQ is greater than the order of the truncation error, are valid
not only for the DG method but also for some other schemes with several degrees of freedom per cell. A scheme on
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a periodic mesh shows the same behavior if the mesh is refined by scaling (see Fig. 3). In this case we assume that if35

the mesh is scaled by a factor then h is multiplied by the same factor.
Consider anL2­stable schemewith a local mappingΠh (for the definition of “local” see Section 2.5). The existence

of a mapping Π̃h satisfying (A1) and (A2) for some P and Q proves the estimate (1.2). We are concerned with the
following related problems.

1. How to get the optimal values of P and Q in the estimate (1.2)?40

2. Does a mapping Π̃h satisfying (A1) and (A2) for these P and Q exist?
3. How to construct it?

The main results of this paper are presented in three theorems. Theorem 1 gives the optimal value of P . Theorem 2
claims that the auxiliary mapping Π̃h does exist. Theorem 3 states that in 1D and some multidimensional cases it can
be found in a form similar to (1.3), that is the original mapping is modified using a local corrector. This leads to an45

algorithm which reduces the problem of finding the optimal values of P andQ in the estimate (1.2) to solving a linear
system. However, in the general multidimensional case the situation is more tricky: generally the required corrector
is nonlocal and the optimal value of Q can be non­integer.

The rest of the paper is organized as follows. In Section 2 we present a mathematical formulation of the problem.
In Section 3 we state the main results. In Section 4 we recall the Lax – Ryabenkii theorem and present the basics50

of the method of auxiliary mapping. Section 5 is auxiliary and contains technical results. In Section 6 we use the
spectral analysis to reduce our problem to a finite­dimensional formulation. In Section 7 we consider 1D case. While
the results of this section can be treated as partial cases of the results from the next section, the 1D structure allows us
to use simpler methods and understand the phenomenon of the enhanced accuracy in the long­time simulation more
clearly. In Section 8 for a scheme possessing an estimate of the form (1.2) we prove the existence of an auxiliary55

mapping such that (A1) and (A2) hold. In Section 9 we consider two cases when this mapping is local. In Section 10
for these cases we present algorithms to get the optimal values P and Q in the estimate (1.2). In Section 11 we
demonstrate our method on 1D examples. In Sections 12 and 13 we construct counterexamples for the 2D transport
equation. In particular, we show that a local mapping Π

(P,Q)
h such that (A1) and (A2) hold generally does not exist.

In Conclusion we summarize primary results of the paper.60

2. Problem formulation

2.1. Solution spaces
Let d ∈ N be the space dimension. Let aj , j = 1, . . . , d, form a basis in Rd. We consider haj as lattice vectors of

the mesh. Let T be the map of Rd to Rd that takes each η to

Tη =

d∑
j=1

ηjaj . (2.1)

If η ∈ Zd then Tη is the offset of the block η from the zero block. We have (T ∗x)j = x ·aj . If aj coincide with the
vectors of the standard basis, T is the identity operator.

We say that f ∈ L2,loc(Rd) is periodic with periodN0 ∈ N if for all j = 1, . . . , d there holds f(r +N0aj) = f(r)
for almost all r ∈ Rd. Unless specifically stated, we will consider complex­valued functions. Denote by L2,per(Rd)
the linear space of periodic f ∈ L2,loc(Rd) equipped with the norm

∥f∥2 =
1

|2|

∫
2

|f(r)|2dV,

where 2 is the parallelepiped generated by the vectors N0a1, . . ., N0ad and N0 is a period of f .65

DenoteHq
per(Rd) = L2,per(Rd)∩W q

2,loc(Rd) for q ⩾ 0 and Cq
per(Rd) = L2,per(Rd)∩Cq(Rd) for q ∈ N∪ {0}.

For w ∈ Hq
per(Rd) (or w ∈ Cq

per(Rd)), q ∈ N ∪ {0}, r = 0, . . . , q, denote

∥∇rw∥2 =
∑

|m|=r

r!

m!
∥Dmw∥2 , ∥∇rw∥2∞ =

∑
|m|=r

r!

m!
max
Rd

|Dmw|2 , Dm =
∂|m|

∂xm1
1 . . . ∂xmd

d

. (2.2)
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Herem = (m1, . . . ,md) is a multiindex: mj ∈ N ∪ {0}, |m| = m1 + . . . +md,m! = m1! . . .md!. Obviously,
∥∇rf∥ ⩽ ∥∇rf∥∞. Denote rm = xm1

1 . . . xmd

d for r = (x1, . . . , xd). The notation l ⩽ m means that for each
j = 1, . . . , d there holds lj ⩽ mj .

Each w ∈ L2,per(Rd) with a period N0 can be represented by the Fourier series

w =
∑
k∈Zd

w̃k exp
(
i
2π

N0
k · T−1r

)
, (2.3)

converging in L2,per(Rd). If we consider w as a function with period 2N0, the coefficients w̃k will change. To avoid
this, we introduce

A = {α ∈ Rd : T ∗α/π ∈ Qd}.

Denoting α = 2π(T ∗)−1k/N0 we rewrite (2.3) as

w =
∑
α∈A

wα exp (iα · r) . (2.4)

Here and below in such sums we imply that there exists a common multiple of denominators of all T ∗α/(2π) such
that wα ̸= 0. For w ∈ L2,per(Rd), Parseval’s identity ∥w∥2 =

∑
|wα|2 is valid. The correspondence between70

w ∈ L2,per(Rd) and its Fourier coefficients wα in (2.4) establishes a bijective isometry between L2,per(Rd) and a
dense subspace of l2(A,C). The set A is the frequency domain of this Fourier transform.

For w ∈ Hq
per(Rd), q ∈ R, q ⩾ 0, denote

∥∇qw∥2 =
∑
α∈A

|wα|2|α|2q. (2.5)

For q ∈ N ∪ {0} the definitions (2.2) and (2.5) coincide (see Lemma A.1 in Appendix). We equip Hq
per(Rd), q ∈ R,

q ⩾ 0 and Cq
per(Rd), q ∈ N ∪ {0} with the families of norms

∥f∥2(q,h) = ∥f∥2 + h2q∥∇qf∥2, ∥f∥2(q,h,∞) = ∥f∥2∞ + h2q∥∇qf∥2∞.

Let Ω be the unit sphere in Rd. Denote by Ω̊ a set of vectors e ∈ Ω such that λT ∗e ∈ Qd for some λ > 0. We
say that f ∈ L2,loc(Rd) has a direction e ∈ Ω and write f ∈ L2,loc,e(Rd) if there exists a function g ∈ L2,loc(R)
such that f(r) = g(r · e) for almost all r ∈ Rd. For e ∈ Ω̊ we denote Hq

per,e(Rd) = L2,loc,e(Rd) ∩ Hq
per(Rd),75

Cq
per,e(Rd) = L2,loc,e(Rd) ∩ Cq

per(Rd). The spaces Hq
per,e(Rd) and Cq

per,e(Rd) contain nonconstant functions (see
Lemma A.2 in Appendix).

2.2. Mesh function spaces
LetM0 be a finite set of the degrees of freedom (DOFs) at a mesh block andM = Zd ×M0 be the general set

of DOFs. For f ∈ CM by fη ∈ CM0

we denote a part of the vector f in the block η ∈ Zd. We shall also call fη the
block component of f at η. The set of sequences with period N is

V N
per = {f ∈ CM : ∀η, ζ ∈ Zd fη+Nζ = fη}.

The set of periodic sequences Vper =
⋃

N∈N
V N
per is equipped with the scalar product defined for f ∈ V

N(f)
per , g ∈ V

N(g)
per

as
(f, g) =

1

Nd

∑
η=(0,...,N−1)d

(fη, gη), N = N(f)N(g).

Here (fη, gη) is any scalar product on CM0

. If the function f has a period N(f) then it has the period nN(f) for all
n ∈ N, but the substitution nN(f) forN(f) does not change the value of the scalar product. We equip CM0

and Vper80

with the norms induced by these scalar products: ∥fη∥2 = (fη, fη); ∥f∥2 = (f, f). The space Vper is incomplete
(see Corollary 6.3).
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2.3. The equation and the schemes
In this paper we consider the initial value problem for the model linear transport equation

∂v

∂t
+ ω · ∇v = 0, r ∈ Rd, (2.6)

v(0, r) = v0(r) ∈ L2,per(Rd). (2.7)

The transport velocity ω is constant in space and time.
To approximate (2.6) consider semi­discrete schemes of the form∑

ζ∈S

Zζ
duη+ζ
dt

(t) +
1

h

∑
ζ∈S

Lζuη+ζ(t) = 0, η ∈ Zd, uη ∈ CM0

, (2.8)

where S ⊂ Zd is a finite set (the stencil of the scheme), Zζ and Lζ are real­valued matrices. For ζ ̸∈ S put
Zζ = Lζ = 0. Let Z : CM → CM and L : CM → CM take each u to Zu and Lu such that

(Zu)η =
∑
ζ∈S

Zζuη+ζ , (Lu)η =
∑
ζ∈S

Lζuη+ζ . (2.9)

With this notation, (2.8) is equivalent to

Z
du

dt
+

1

h
Lu = 0. (2.10)

Obviously, Z V N
per ⊆ V N

per, LV N
per ⊆ V N

per, hence, Z Vper ⊆ Vper, LVper ⊆ Vper. The operators L and Z are bounded
on Vper with

∥Z∥ ⩽
∑
ζ∈S

∥Zζ∥, ∥L∥ ⩽
∑
ζ∈S

∥Lζ∥,

where the operator norms on the LHS are induced by the norm on Vper and the operator norms on the RHS are induced85

by the norm on CM0

.

Lemma 2.1. The operator Z : Vper → Vper has a bounded inverse if and only if for each N there exists an inverse
for the restriction of Z to V N

per, with its norm being limited by a constant independent of N .

Proof. Let Z be invertible and ∥Z−1∥ <∞. Then KerZ = {0}. In particular, for eachN the restriction of Z to V N
per

has zero kernel, and is invertible. Then Z−1V N
per = V N

per. Clearly, the norm of the restriction of Z−1 to V N
per does not90

exceed the norm of Z−1 on Vper. To prove the reverse implication note that the norm of Z−1 on Vper is the supremum
of the norms of its restrictions to V N

per.

Further in this paper we assume that for Z : Vper → Vper there exists a bounded inverse.

Lemma 2.2. For any initial data u0 ∈ Vper the ODE system (2.10) has a unique solution u ∈ C∞([0,∞), Vper)
satisfying u(0) = u0. Besides, if u0 ∈ V N

per, then for any t > 0 we have u(t) ∈ V N
per.95

Proof. Let u0 ∈ V N
per. Since Z is invertible on V N

per and Z−1LV N
per ⊂ V N

per, (2.10) has a solution
u ∈ C∞([0,∞), V N

per). The uniqueness on Vper follows from the boundedness of Z−1L on Vper.

Since the operator Z−1L is bounded on Vper, and V N
per are its invariant subspaces, it generates the uniformly

continuous operator group exp(−zZ−1L) =
∑∞

k=0(−zZ−1L)k/k!, z ∈ C, which is analytical on the whole complex
plane and also has V N

per as its invariant subspaces. Since V N
per are finite dimensional, on these subspaces exp(−Z−1Lz)100

can be represented as the standard matrix exponential. For u0 ∈ Vper the function u(t) = exp(−Z−1Lt/h)u0 solves
(2.10) with the initial data u(0) = u0.

A scheme (2.8) is called stable on Vper with the stability constant K, if for all h and each u ∈ C∞([0,∞), Vper)
satisfying (2.8) and each t ⩾ 0 there holds ∥u(t)∥ ⩽ K∥u(0)∥. In other words, a scheme (2.8) is stable with stability
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Figure 2: Fragments of a mesh with spectral elements. Left: unstructured mesh. Right: translationally­invariant mesh. In the right figure, nodes
from different mesh blocks are marked by different symbols

Figure 3: Block refinement of a mesh

constantK iff sup
t,h>0

∥ exp(−Z−1Lt/h)∥ = sup
ν⩾0

∥ exp(−Z−1Lν)∥ ⩽ K.105

The most simple schemes of the form (2.8) are the finite­difference schemes on the uniform meshes. In this case
|M0| = 1, the order of accuracy coincides with the order of the truncation error and there is no enhanced accuracy
in the long­time simulation (see Proposition 9.9). The schemes of the form (2.8) such that |M0| > 1 arise in the
following situations.110

• Schemes with several DOFs per cell on the uniform meshes: discontinuous Galerkin, spectral difference, active
flux etc. In this case aj are the linearly independent vectors of the mesh edges andM0 is the set of the DOFs
in a cell. We assume that the ratio of the mesh steps along different directions remains constant under mesh
refinement.

• The use of spectral elements. For example, in the flux correction method [24] one needs to compute the gra­115

dients at nodes of an unstructured mesh with the second order of the truncation error. It is convenient to use
an unstructured mesh obtained by refining a base mesh (see Fig. 2, left). Elements of the base mesh are called
spectral elements. On each spectral element one can construct the 2­nd order interpolation polynomial based on
the nodal values of the mesh function. A gradient of the mesh function at a node can be defined as a weighted
average of the gradients of interpolation polynomials at all the spectral elements containing this node. The re­120

sulting scheme on the translationally­invariant meshes has the form (2.8) with |M0| = 4 (see Fig. 2, right) since
the gradients are defined differently in the nodes on the base mesh and in the nodes at edges of the spectral
elements. We say that the mesh is translationally­invariant if it is invariant with respect to the translation by the
vector of any mesh edge.

• Finite­difference or finite­volume schemes if the block refinement is used (see Fig. 3). In this case the whole125

mesh is uniform­block, i. e. space is tessellated by blocks of an unstructured mesh. Blocks can be indexed by
η1, . . . , ηd, as if they were cells of the uniform mesh. Vectors aj , j = 1, . . . , d are the offsets of blocks adjacent
to a reference block and |M0| is the number of DOFs per block.

• Combination of the cases mentioned above. For example, the DG method on a simplicial translationally­
invariant mesh.130
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2.4. Homogeneous mappings to the mesh space
Throughout this paper we assume that 1/h ∈ N. In order to transform data to the mesh space (prescribe the initial

data for the difference problem etc.) one needs a mapping. LetH = Hq
per(Rd) orH = Cq

per(Rd). Consider a family
of linear mappings Πh : H → Vper, 1/h ∈ N, with the following properties:

(P1) for each f, g ∈ H such that almost everywhere g(r) = f(r + hTζ) there holds (Πhf)η+ζ,ξ = (Πhg)η,ξ for
each η, ζ ∈ Zd, ξ ∈M0;

(P2) for each f, g ∈ H such that almost everywhere g(r) = f(r/h) there holds (Πhg)η,ξ = (Π1f)η,ξ;
(P3) if f ∈ H is real­valued then so is Πhf .

EachΠh from this family we call a homogeneous mapping. By (P2), a homogeneous mappingΠh uniquely defines135

the family it belongs to.
A homogeneous mapping Πh maps a function f ∈ H with a periodN0 to a sequence Πhf ∈ Vper with the period

N0/h. This follows directly from the definition. A homogeneous mapping Πh of Hr
per(Rd) to Vper is bounded

if ∥Πh∥(r,h) := sup ∥Πhf∥/∥f∥(r,h) < ∞. A homogeneous mapping Πh of Cr
per(Rd) to Vper is bounded if

∥Πh∥(r,h,∞) := sup ∥Πhf∥/∥f∥(r,h,∞) <∞. By construction, ∥Πh∥(r,h) and ∥Πh∥(r,h,∞) do not depend on h.140

2.5. Local mappings to the mesh space
Consider a family of mappings Πh, 1/h ∈ N, from L2,loc(Rd) to CM of the form

(Πhf)η,ξ = ⟨µξ, f(h( · + Tη))⟩ (2.11)

where η ∈ Zd is the index of a mesh block, ξ ∈ M0 is the index of a variable inside the block, µξ ∈ (W q
2 (G))

∗ or
(Cq(G))∗ for some q ∈ N ∪ {0} and a bounded domain G, Πhf is real­valued for real­valued f , and ⟨µξ, 1⟩ ̸= 0 for
at least one ξ ∈ M0. Each Πh from this family we call a local mapping and µξ we call its kernel. Particularly, if µξ

is a measure then

(Πhf)η,ξ =

∫
G

f(h(r + Tη))dµξ =

∫
G

f

(
hr + h

d∑
j=1

ηjaj

)
dµξ.

If µξ ∈ L2(G), then Πh maps L2,loc(Rd) to CM . For example, the standard L2­projection onto a space of functions,
which are polynomials on each mesh cell, can be represented as a local mapping. If µξ ∈ (W q

2 (G))
∗ for some

q ∈ N ∪ {0}, then Πh maps Hq
loc(Rd) to CM . If µξ ∈ (Cq(G))∗ for some q ∈ N ∪ {0}, then Πh maps Cq(Rd) to

CM . An example is the pointwise mapping used in finite­difference schemes, namely, (Πhf)η,ξ = f(h(ρξ + Tη))145

(i. e. µξ = δ(r − ρξ)) where ρξ are collocation points.

Lemma 2.3. A local mapping Πh with µξ ∈ (W q
2 (G))

∗ is a bounded homogeneous mapping of Hq
per(Rd) to Vper.

A local mapping Π′
h with µξ ∈ (Cq(G))∗ is a bounded homogeneous mapping of Cq

per(Rd) to Vper.

Proof. Let N0 be a period of f . Then for each η, ζ ∈ Zd, ξ ∈M0 there holds

(Πhf)η+ζN0/h,ξ = ⟨µξ, f (h ( · + Tη) +N0Tζ)⟩ = ⟨µξ, f (h ( · + Tη))⟩ = (Πhf)η,ξ,

and the same for Π′
h. Thus ΠhH

q
per(Rd) ⊆ Vper, Π′

hC
q
per(Rd) ⊆ Vper. The properties (P1) and (P2) are obvious.

The boundedness of Π′
h is obvious; the proof of the boundedness of Πh is in Appendix (see Proposition A.4).150

In this paper we will use mappings Π(p,q)
h and Π(p,q)

h,e , p, q ∈ N, given by(
Π

(p,q)
h f

)
η
= (Πhf)η +

∑
p⩽|m|⩽q

h|m|C(m) (PhD
mf)η , (2.12)

(
Π

(p,q)
h,e f

)
η
= (Πhf)η +

q∑
m=p

hmC(m)
e

(
Ph

∂mf

∂em

)
η

, (2.13)

7



whereΠh and Ph are some local mappings, the kernel µ̂ξ of Ph satisfies ⟨µ̂ξ, 1⟩ ̸= 0 for each ξ ∈M0, C(m) and C(m)
e

are diagonal square real­valued matrices of size |M0|, and e is a unit vector. It is easy to see that Π(p,q)
h and Π(p,q)

h,e are
local mappings. If the kernels of Πh and Ph belong to L2(G) then Π

(p,q)
h mapsW q

2,loc(Rd) to CM and Hq
per(Rd) to

Vper. If the kernels of Πh and Ph belong to (C(G))∗ then Π(p,q)
h maps Cq(Rd) to CM and Cq

per(Rd) to Vper.

2.6. The truncation error and the solution error155

Suppose Π maps a subspace of H1
loc(Rd) to CM . The truncation error on the function f in the sense of Π is the

vector ϵh(f,Π) ∈ CM defined as

ϵh(f,Π) = −ZΠ(ω · ∇f) + 1

h
LΠf. (2.14)

Let Πh be a homogeneous mapping of f ∈ Hq
per(Rd) (or Cq

per(Rd)) to Vper. Then for each f with a period N0

and each h there holds ϵh(f,Πh) ∈ V
(N0/h)
per .

Definition 1. We say that the scheme possesses the truncation error of order PA in the sense of Πh if for eachα ∈ A
there holds ∥ϵh(eiα·r,Πh)∥ ⩽ C(α)hPA . We say that the scheme possesses the truncation error of order PA in the
sense of Πh on the direction e ∈ Ω̊ if for each α ∈ R such that αe ∈ A there holds ∥ϵh(eiαe·r,Πh)∥ ⩽ C(α)hPA .160

We say that the optimal order of the truncation error is PA if the scheme possesses the truncation error of order PA

and does not possess the truncation error of order PA + δ for each δ > 0.

Later (see Corollary 6.21) we will show that for a local mapping Πh with kernel µ ∈ (W q
2 (G))

∗ the scheme
possesses the truncation error of order PA ∈ N iff for some c1, c2 > 0 there holds

∥ϵh(v0,Πh)∥ ⩽ c1∥∇PA+1v0∥hPA + c2∥∇max{PA,q}+1v0∥ hmax{PA,q},

for each v0 ∈ H
max{PA,q}+1
per (Rd). A similar property holds if µ ∈ (Cq(G))∗.

Definition 2. SupposeΠ mapsHr
per(Rd) or Cr

per(Rd) to Vper for some r. The solution error in the sense ofΠ with
the initial data v0 is the vector

εh(t, v0,Π) = u(t)−Πv(t, · ) ∈ Vper, (2.15)

where u(t) = exp(−Z−1Lt/h)Πv0 is the solution of (2.10) with the initial data u(0) = Πv0, and
v(t, r) = v0(r − ωt).165

If Πh is a local mapping with µξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗), then for each f ∈ Hq
per(Rd) (or Cq

per(Rd)) with a
periodN0 and each h and t ⩾ 0 there holds εh(t, f,Πh) ∈ V

(N0/h)
per . Note that by definition we have εh(0, v0,Π) ≡ 0,

so in contrast to the concepts conventional in the finite­element analysis we do not consider the error of the initial data
mapping to be a part of the solution error.

2.7. Long­time simulation accuracy170

We introduce two different definitions of the scheme order in the long­time simulation.

Definition 3. Consider a scheme of the form (2.8) and a homogeneous mapping Πh ofH ⊆ L2,per(Rd) to Vper. Let
P , Q satisfy 0 < P ⩽ Q ⩽ ∞. Suppose for each v0 ∈ H there exist non­negative constants c1(v0), c2(v0) such that
for each h, and each t ⩾ 0 the scheme possesses the error estimate

∥εh(t, v0,Πh)∥ ⩽ c1(v0)h
P + c2(v0)th

Q (2.16)

(here we assume h∞ = 0). Then we say that in the sense of Πh on H the scheme possesses the formal order of
accuracy P and the long­time simulation order Q in the weak sense.
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Definition 4. Let H be one of the following spaces: HR
per(Rd) for some R ⩾ 0, CR

per(Rd) for some R ∈ N ∪ {0},
HR

per,e(Rd) for some R ⩾ 0 and e ∈ Ω̊, CR
per,e(Rd) for some R ∈ N ∪ {0} and e ∈ Ω̊. Consider a scheme of the175

form (2.8) and a homogeneous mapping Πh withH in the domain of Πh.
i. Let P and Q be real numbers satisfying 0 < P ⩽ Q < ∞ and Q + 1 ⩽ R. We say that the scheme possesses
the formal order of accuracy P and the long­time simulation order Q in the sense of Πh on H if for each initial data
v0 ∈ H, each h, and each t ⩾ 0 the scheme possesses the error estimate

∥εh(t, v0,Πh)∥ ⩽ C1h
P ∥∇P v0∥+ C2th

Q∥∇Q+1v0∥+ C3h
R∥∇Rv0∥∗ (2.17)

where C1, C2, C3 are non­negative constants independent of v0, h, and t. Here ∗ ≡ ∞ for H = CR
per(Rd) or

CR
per,e(Rd) and dropped otherwise1.

ii. Let P be a real number satisfying 0 < P ⩽ R. We say that the scheme possesses the formal order of accuracy P
and the long­time simulation order Q = ∞ in the sense of Πh on H if for each initial data v0 ∈ H, each h, and each
t ⩾ 0 the scheme possesses the error estimate

∥εh(t, v0,Πh)∥ ⩽ C1h
P ∥∇P v0∥+ C3h

R∥∇Rv0∥∗ (2.18)

with nonnegative constants C1 and C3 independent of v0, h, and t, and ∗ treated as in (2.17).
iii. If for each initial data v0 ∈ H there holds εh(t, v0,Πh) ≡ 0 then we say that the scheme possesses the formal180

order of accuracy P = ∞ and the long­time simulation order Q = ∞ onH.

Obviously, if the scheme possesses the formal order of accuracy P and the long­time simulation order Q then it
possesses the same orders in the weak sense. Unless specifically stated, speaking about the formal order of accuracy
and the long­time simulation order we imply the use of Definition 4.

For y ∈ R denote by ⌊y⌋ the largest integer that is less than or equal to y and by ⌈y⌉ the lowest integer that is185

greater than or equal to y. The formal order of accuracy and the long­time simulation order given by Definition 4 have
the following properties, which are intuintively clear.

Lemma 2.4. Let Πh be a local mapping with µξ ∈ (W s
2 (G))

∗ (or (Cs(G))∗). Let the scheme (2.8) be stable
and possess the formal order of accuracy P and the long­time simulation order Q on Hr

per(Rd) (or C⌈r⌉
per(Rd)),

r ⩾ max{Q+ 1, s} (or r ⩾ max{P, s} if Q = ∞). Then for each p and q such that 0 < p ⩽ P and p ⩽ q ⩽ Q the190

scheme possesses the formal order p and the long­time simulation order q onHr
per(Rd) (orC⌈r⌉

per(Rd)). If q < Q = ∞
we additionally assume q ⩽ r − 1. The same holds for the definition in the weak sense.

In the sense of Definition 3 this is obvious; in the sense of Definition 4 this will be proved below (see Corol­
lary 6.18). So we can say that the scheme possesses the order of accuracy P , 0 < P ⩽ ∞, if the scheme possesses
the formal order of accuracy P and the long­time simulation order P on Hr

per(Rd) (or C⌈r⌉
per(Rd)) with r ⩾ P .195

Lemma 2.5. Let P > 0, Q ⩾ P , R ⩾ Q + 1. Let Πh be a homogeneous mapping of HR
per(Rd). Let r ⩾ R. The

scheme (2.8) possesses the formal order P and the long­time simulation order Q on HR
per(Rd) iff it possesses these

orders on Hr
per(Rd).

Lemma 2.6. Let P > 0, Q ⩾ P , R ⩾ Q+1, R ∈ N. Let Πh be a local mapping with µξ ∈ (WR
2 (G))∗. The scheme

(2.8) possesses the formal order P and the long­time simulation orderQ onHR
per(Rd) iff it possesses the formal order200

P and the long­time simulation order Q on CR
per(Rd).

These lemmas follow from Theorem 6.17. Thus we will drop the class of functions on which the scheme possesses
these orders, unless this leads to ambiguity.

Definitions 3 and 4 introduce the concepts of the formal order and the long­time simulation order simultaneously.
Now we introduce the concept of the optimal values in such a way that one should first define the optimal value of the205

formal order of accuracy and then find the optimal value of the long­time simulation order.

1If P,Q ∈ N, then ∥∇P v0∥ and ∥∇Q+1v0∥ can be replaced by ∥∇P v0∥∗ and ∥∇Q+1v0∥∗, which leads to an equivalent definition.
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Definition 5. Let Πh be a homogeneous mapping. Let the scheme (2.8) possess the formal order P and the long­time
simulation order Q in the sense of Πh on HR

per(Rd) (or HR
per,e(Rd)). If for each P ′ > P , Q′ ⩾ P ′ and for each

P ′ = P , Q′ > Q the scheme does not possess the formal order P ′ and the long­time simulation order Q′ in the
sense of Πh on any Hr

per(Rd) (or Hr
per,e(Rd)), then we call the values P and Q optimal. The optimal values for210

homogeneous mappings of Cq
per(Rd) and the optimal values in the weak sense are defined in the same way.

3. Main results

For n ∈ N, let Ω̊n be a set of vectors {ek ∈ Ω̊, k = 1, . . . , Cd−1
n+d−1} such that {(ek ·r)n} form a basis in the space

of homogeneous polynomials of order n. For the existence of this set see Lemma A.6. Denote L(0) =
∑
ζ Lζ .

Theorem 1. Consider a scheme of the form (2.8), stable with a constant K, and local mappings Πh, Ph with ker­215

nels µξ, µ̂ξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗). Let PA and P be the optimal orders of the truncation error and accuracy,
correspondingly, in the sense of Πh. Let κ̂ = minξ∈M0 |⟨µ̂ξ, 1⟩| > 0 and R = max{q, P} + 1. Then the following
holds.

1. PA and P are integers.
2. Either P = PA or P = PA + 1.220

3. If P = PA + 1 then there exist real­valued diagonal matrices C(m), |m| = P , such that the scheme possesses
the truncation error of order P in the sense of Π(P,P )

h given by (2.12). Moreover, ∥C(m)∥ ⩽ δ̃C1, where C1 is
the constant in estimate (2.17) and δ̃ depends only onK, κ̂, P , |M0|, and the norm on CM0 .

4. If P = PA then there exists no set of matrices {C(m), |m| = PA + 1}, such that the scheme possesses the
truncation error of order PA + 1 in the sense of Π(PA+1,PA+1)

h given by (2.12).225

5. If L(0) = 0 then P = PA.
6. If the scheme possesses the formal order of accuracyPA+1 onHR

per,e(Rd) (orCR
per,e(Rd)) for each e ∈ Ω̊PA+1,

then it possesses the formal order of accuracy P = PA + 1 on HR
per(Rd) (or CR

per(Rd)).
7. P coincides with the optimal order of accuracy in the weak sense.

Theorem 2. Let Πh be a local mapping with µξ ∈ (W q
2 (G))

∗ or (Cq(G))∗. Let P,Q > 0, r ⩾ max{P, q}, and
R = max{Q+ 1, r}. Let the scheme (2.8) be stable and possess the error estimate (2.17) onHR

per(Rd) (orC⌈R⌉
per (Rd)).

Then there exists a homogeneous mapping Π̃h : L2,per(Rd) → Vper such that

∥Π̃hf −Πhf∥ ⩽ C(hP ∥∇P f∥+ hr∥∇rf∥∗), ∥ϵh(f, Π̃h)∥ ⩽ ChQ∥∇Q+1f∥

for each h and f ∈ HR
per(Rd) (or C⌈R⌉

per (Rd)), where C does not depend on h and f , and ∥ · ∥∗ means either ∥ · ∥230

or ∥ · ∥∞ depending on the case.

Note that the mapping Π̃h given by this theorem is generally not local.
In order to formulate the third result, we need two more definitions.

Definition 6. We say that a scheme of the form (2.8) is quasi­1D if the stencil S of the scheme belongs to a 1D subset
of Zd, i. e. there exists η ∈ Zd such that S ⊂ {mη,m ∈ Z}.235

In 1D case, each scheme is quasi­1D.

Definition 7. We say that a scheme of the form (2.8) is simple if the matrix L(0) ≡
∑
ζ Lζ has rank |M0| − 1.

Note that ifL(0) has rank |M0| then the scheme does not preserve a constant solution, thus its order of the truncation
error is equal to PA = −1, then P ⩽ 0 by Theorem 1, i. e. there is no solution convergence.

Theorem 3. Let Πh and Ph be local mappings with kernels µξ, µ̂ξ ∈ (W r
2 (G))

∗ (or (Cr(G))∗). Let240

κ̂ = minξ∈M0 |⟨µ̂ξ, 1⟩| > 0. Let the scheme (2.8) be 1) stable and 2) either quasi­1D or simple. Let PA, P , and
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Table 1: Relations between the definitions

The scheme possesses
the formal order of accuracy P

and the long­time simulation order Q
on HQ+1

per (Rd)

⇐⇒
Corollary 6.19

For each e ∈ Ω̊, the scheme possesses
the formal order of accuracy P

and the long­time simulation order Q
on HQ+1

per,e(Rd), the coefficients of the estimate
being bounded in e ∈ Ω̊

⇓ ̸⇑ (sect. 12.4) ⇑
The scheme possesses

the formal order of accuracy P
and the long­time simulation order Q
on HQ+1

per (Rd) in the weak sense

if the scheme is “simple” or quasi­1D
(Theorem 3);

if P = Q (Theorem 1)

⇓ ∥
For each e ∈ Ω̊⌈Q⌉, the scheme possesses

the formal order of accuracy P
and the long­time simulation order Q
on HQ+1

per,e(Rd) in the weak sense

⇐⇒
Proposition 6.22

For each e ∈ Ω̊⌈Q⌉, the scheme possesses
the formal order of accuracy P

and the long­time simulation order Q
on HQ+1

per,e(Rd)

Q be the optimal values of the order of the truncation error, the formal order of accuracy, and the long­time simula­
tion order, correspondingly. Then the following holds.

1. Q ∈ N ∪ {0}.
2. There exist real­valued diagonal matrices C(m), P ⩽ |m| ⩽ Q, such that the scheme possesses the truncation245

error of order Q in the sense of Π(P,Q)
h given by (2.12).

3. Let p, q > 0. If for each e ∈ Ω̊⌈q⌉ the scheme possesses the formal order of accuracy p and the long­time
simulation order q on HR

per,e(Rd) (or C⌈R⌉
per,e(Rd)), where R ⩾ max{r, p, q + 1}, then it possesses the formal

order of accuracy p and the long­time simulation order q on HR
per(Rd) (or C⌈R⌉

per (Rd)). Particularly, if p = P ,
then Q ⩾ q.250

4. Q coincides with the optimal value of the long­time simulation order in the weak sense.
5. If the scheme is simple, then either Q ⩾ P = PA + 1 or Q = P = PA.

If the scheme is neither quasi­1D nor simple, then the statements 1–4 of Theorem 3 may be wrong, see counter­
examples to the statements 1 and 2 in Section 12.4, to the statement 3 in Sections 12.2 and 12.3, to the statement 4 in
Section 12.1. If the scheme is not simple, then the statement 5 of Theorem 3 may also be wrong even in 1D case, see255

Section 11.3.
The optimal value of the formal order of accuracy is the same for Definitions 3 and 4, but this generally does not

hold for the long­time simulation order. Relations between the definitions are shown in Table 1. For each implication,
a reference to a corresponding statement is given unless it is obvious. For an implication that does not hold, a reference
to a counter­example is given.260

Basing on Theorems 1 and 3 we construct algorithms giving the optimal values of the formal order of accuracy
(for each stable scheme) and of the long­time simulation order (for simple and quasi­1D schemes), see Section 10.
Theorem 2 is used below to establish Theorem 8.5 which states that a scheme possesses the formal order of accuracy
P and the long­time simulation order Q if and only if a specific function is bounded at zero.

4. The method of auxiliary mapping265

Theorem 4.1 (Lax – Ryabenkii). LetΠh be a map ofHQ+1
per (Rd) to Vper. LetK be the stability constant of the scheme

(2.8). Let for each f ∈ HQ+1
per (Rd) there hold

∥ϵ(f,Πh)∥ ⩽ ChQ∥∇Q+1f∥. (4.1)
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Then for each v0 there holds
∥εh(t, v0,Πh)∥ ⩽ CKthQ∥Z−1∥∥∇Q+1v0∥. (4.2)

Proof. Put v(t, r) = v0(r − ωt). Taking the time derivative of (2.15), multiplying by Z and using (2.10) we get

Z
d

dt
εh(t, v0,Πh) = − 1

h
Lu(t) + ZΠh(ω · ∇)v(t, · ) =

= − 1

h
L (εh(t, v0,Πh) + Πhv(t, · )) + ZΠh(ω · ∇)v(t, · ).

By (2.14) this is equivalent to

Z
d

dt
εh(t, v0,Πh) +

1

h
Lεh(t, v0,Πh) = −ϵh(v(t, · ),Πh).

Since εh(0, v0,Πh) = 0 (see (2.15)),

εh(t, v0,Πh) = −
t∫

0

exp
(
−Z−1L

t− τ

h

)
Z−1ϵh(v(τ, · ),Πh) dτ.

By stability ∥ exp(−νZ−1L)∥ ⩽ K for all ν ⩾ 0, so using (4.1) we have

∥εh(t, v0,Πh)∥ ⩽ Kt max
0⩽τ⩽t

∥Z−1ϵh(v(τ, · ),Πh)∥ ⩽ CKthQ∥Z−1∥ · max
0⩽τ⩽t

∥∇Q+1v(τ, · )∥.

It remains to note that ∥∇Q+1v(τ, · )∥ = ∥∇Q+1v0∥ for all τ .

The following proposition describes the method of auxiliary mapping, which is the cornerstone of this paper.

Proposition 4.2. Consider a stable scheme (2.8) and homogeneous mappings Πh and Π̃h from L2,per(Rd) to Vper.
Suppose for some P and Q for each f ∈ H

max{P,Q+1}
per there holds

∥(Πh − Π̃h)f∥ ⩽ C1h
P ∥∇P f∥ and ∥ϵ(f, Π̃h)∥ ⩽ C2h

Q∥∇Q+1f∥.

Then the scheme possesses the formal order of accuracy P and the long­time simulation order Q in the sense of Πh.

Proof. Let u(t) and ũ(t) be the solutions of (2.8) with the initial data u(0) = Πhv0 and ũ(0) = Π̃hv0, correspondingly.
Denote by v the exact solution v(t, r) = v0(r − ωt). Then

∥εh(t, v0,Πh)∥ = ∥u(t)−Πhv(t, · )∥ ⩽

⩽ ∥u(t)− ũ(t)∥+ ∥ũ(t)− Π̃hv(t, · )∥+ ∥Π̃hv(t, · )−Πhv(t, · )∥.

By stability there holds
∥u(t)− ũ(t)∥ ⩽ K∥u(0)− ũ(0)∥ = K∥Π̃hv0 −Πhv0∥,

whereK is the stability constant of the scheme. Note that ∥v(t, · )∥ ≡ ∥v0∥. Then we get

∥εh(t, v0,Πh)∥ ⩽ ∥εh(t, v0, Π̃h)∥+ (K + 1)C1h
P ∥∇P v0∥. (4.3)

By Theorem 4.1 we get the desired estimate (2.17) or (2.18).270
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5. Preliminaries

5.1. Some properties of the functional spaces
Recall that for n ∈ N, by Ω̊n we denote a set of vectors {ek ∈ Ω̊, k = 1, . . . , Cd−1

n+d−1} such that the polynomials
(ek · r)n form a basis in the space of homogeneous polynomials of order n (see Lemma A.6).

Lemma 5.1. Letm be a multiindex, Ω̊|m| = {ek}. Then there exists γ(m)
k ∈ R, k = 1, . . . , Cd−1

|m|+d−1, such that

Dm =

Cd−1
|m|+d−1∑
k=1

γ
(m)
k (ek · ∇)|m|. (5.1)

275

Proof. Since the polynomials (ek · r)n form a basis in the space of homogeneous polynomials of order n, there exists
a set of coefficients γ(m)

k such that

rm =

Cd−1
|m|+d−1∑
k=1

γ
(m)
k (ek · r)|m|.

Since this is a polynomial identity, it holds with the substitution of∇ for r. Thus we get (5.1).

Lemma 5.2. Let G be a neighborhood of zero in Rd, f ∈ Cp(G), p ∈ N and |f(x)| ⩽ cf |x|p in G. Then
|Dmf(0)| ⩽ cfcp for each |m| = p, where cp does not depend on f .

Proof. For the 1D case, this follows from the Taylor expansion with remainder term in Peano form with cp = p!. Thus
for each direction e ∈ Ω we have |(e · ∇)pf | ⩽ cfp!, and it remains to use Lemma 5.1.280

Lemma 5.3. Let f(ϕ) be a holomorphic function at ϕ = 0, and n,m ∈ N ∪ {0}, m ⩾ n. Suppose for each
e ∈ Ω̊m there exists ce ⩾ 0 such that |f(eψ)| ⩽ ce|ψ|n+1 in a neighborhood of ψ = 0. Then there exists c̃ such that
|f(ϕ)| ⩽ c̃|ϕ|n+1 in a neighborhood of ϕ = 0.

Proof. By Lemma A.5, the system {(e ·r)n, e ∈ Ω̊m} is complete in the space of homogeneous polynomials of order
n. Let g(e,ϕ) = ∂nf/∂en(ϕ). As a function of e, g is a homogeneous polynomial of order n. By assumption285

g(e, 0) = 0 for e ∈ Ω̊m. So we have g(e, 0) = 0 for each e ∈ Ω. By Lemma 5.1 for eachm, |m| = n, we have
Dmf(ϕ) = 0. Then the statement of the Lemma is obvious.

Lemma 5.4. For each p ⩽ m ⩽ q and each w ∈ Hq
per(Rd) there holds

h2m∥∇mw∥2 ⩽ h2p∥∇pw∥2 + h2q∥∇2qw∥2. (5.2)

Proof. For p = m = q this is obvious so assume q > p. Let wα be Fourier coefficients of w. By (2.5),

h2m∥∇mw∥2 =
∑
α∈A

|wα|2|hα|2m ⩽

⩽
∑
α∈A

|wα|2
(
q −m

q − p
|hα|2p + m− p

q − p
|hα|2q

)
⩽ h2p∥∇pw∥2 + h2q∥∇qw∥2,

where we have used the Young inequality for products.

Lemma 5.5. For each p, q ∈ N ∪ {0} there exists C(p, q) such that for eachm = p, . . . , q and f ∈ Cq
per(Rd) there

holds
hm∥∇mf∥∞ ⩽ C(p, q) (hp∥∇pf∥∞ + hq∥∇qf∥∞) .
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Proof. By the coordinate transformation we can assume without loss that h = 1. For 1D case this follows from the
Landau – Kolmogorov inequality [25]. For each e ∈ Ω this yields∥∥∥∥∂mf∂em

∥∥∥∥
∞

⩽ C(p, q)

(∥∥∥∥∂pf∂ep

∥∥∥∥
∞

+

∥∥∥∥∂qf∂eq

∥∥∥∥
∞

)
.

Then by Lemma 5.1 we have

∥∇mf∥2∞ =
∑

|m|=m

m!

m!
max
Rd

|Dmf |2 ⩽
∑

|m|=m

m!

m!
γ2 sup
e∈Ω

∥∥∥∥∂mf∂em

∥∥∥∥2
∞

⩽

⩽
∑

|m|=m

m!

m!
γ2C2(p, q) sup

e∈Ω

(∥∥∥∥∂pf∂ep

∥∥∥∥
∞

+

∥∥∥∥∂qf∂eq

∥∥∥∥
∞

)2

⩽ C̃(p, q) (∥∇pf∥∞ + ∥∇qf∥∞)
2
,

where γ = max
|m|=m

∑
k

|γ(m)
k | and γ(m)

k are given by Lemma 5.1.290

Lemma 5.6. Let 0 ⩽ r ⩽ q < ∞. Then for each f ∈ Hq
per(Rd) there holds ∥f∥(r,h) ⩽ 2∥f∥(q,h).

For r, q ∈ N ∪ {0}, r ⩽ q, there exists C(p, q) such that for each f ∈ Cq
per(Rd) there holds ∥f∥(r,h,∞) ⩽

C(p, q)∥f∥(q,h,∞).

The proof is obvious by Lemma 5.4 and Lemma 5.5.

Lemma 5.7. For each v0 ∈ Hr+1
per (Rd) there holds

∥∇r(ω · ∇v0)∥ ⩽ |ω| ∥∇r+1v0∥, h∥ω · ∇v0∥(r,h) ⩽
√
2|ω| ∥v0∥(r+1,h).

There exists cr such that for each v0 ∈ Cr+1
per (Rd) there holds

∥∇r(ω · ∇v0)∥∞ ⩽ |ω| ∥∇r+1v0∥∞, h∥ω · ∇v0∥(r,h,∞) ⩽ cr|ω| ∥v0∥(r+1,h,∞).

Proof. For v0 ∈ Hr+1
per (Rd), r ⩾ 0, we have

∥∇r(ω · ∇v0)∥2 =
∑
α∈A

|fα|2(ω ·α)2|α|2r ⩽
∑
α∈A

|fα|2|ω|2|α|2r+2 = |ω|2 ∥∇r+1v0∥2.

Then, by Lemma 5.4,

h2∥ω · ∇v0∥2(r,h) = h2∥ω · ∇v0∥2 + h2r+2∥∇r(ω · ∇v0)∥2 ⩽ h2|ω|2∥∇v0∥2 + h2r+2|ω|2∥∇r+1v0∥2 ⩽

⩽ |ω|2
(
∥v0∥2 + 2h2r+2∥∇r+1v0∥2

)
⩽ 2|ω|2 ∥v0∥2(r+1,h).

For v0 ∈ Cr+1
per (Rd), r ∈ N ∪ {0}, we have

∥∇r(ω · ∇v0)∥2∞ =
∑

|m|=r

r!

m!
∥Dm(ω · ∇v0)∥2∞ =

=
∑

|m|=r

r!

m!

∥∥∥∥∑
|l|=1

ωlDm+lv0

∥∥∥∥2
∞

⩽
∑

|m|=r

r!

m!

( ∑
|l|=1

|ωl|
∥∥Dm+lv0

∥∥
∞

)2

⩽ |ω|2
∑

|m|=r

r!

m!

∑
|l|=1

∥∥Dm+lv0
∥∥2
∞ .

Denote n =m+ l, then we continue the chain:

∥∇r(ω · ∇v0)∥2∞ ⩽ |ω|2
∑

|n|=r+1

∑
|l|=1,l⩽n

(r + 1)!

(n− l)! (r + 1)
∥Dnv0∥2∞ =
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= |ω|2
∑

|n|=r+1

(r + 1)!

n!
∥Dnv0∥2∞

∑
|l|=1,l⩽n

nl

|n|
= |ω|2

∑
|n|=r+1

(r + 1)!

n!
∥Dnv0∥2∞ = |ω|2 ∥∇r+1v0∥2∞.

Then, by Lemma 5.5,

h2∥ω · ∇v0∥2(r,h,∞) = h2∥ω · ∇v0∥2∞ + h2r+2∥∇r(ω · ∇v0)∥2∞ ⩽ h2|ω|2∥∇v0∥2∞ + h2r+2|ω|2∥∇r+1v0∥2∞ ⩽

⩽ |ω|2
(
C(1, r + 1)∥v0∥2 + (1 + C(1, r + 1))h2r+2∥∇r+1v0∥2

)
⩽ (1 + C(1, r + 1))|ω|2 ∥v0∥2(r+1,h,∞).

295

5.2. Approximation of local mappings
In this subsection we prove that any local mapping can be approximated by a local mapping with a continuous

kernel.

Lemma 5.8. Let s ∈ N. Then there exists κ(s) ∈ Cs({|x| ⩽ 1}) such that the following conditions hold.
(i) κ(s) and its derivatives up to the order s are equal to zero on |x| = 1;300

(ii) there holds ∫
|x|<1

κ(s)(x)dx = 1; (5.3)

(iii) for each σ = 0, . . . , s+ 1, each f ∈ Cσ
per(Rd), and each y ∈ Rd there holds∣∣∣∣ ∫

|x|<1

κ(s)(x)f(y + hx)dx− f(y)

∣∣∣∣ ⩽ C(d, s)hσ∥∇σf∥∞. (5.4)

Proof. Put κ(s)(x) = |x|2s(1− |x|)sg(|x|), where g(r) is a smooth function on [0, 1] such that

|Ω|
1∫

0

r2s+d−1(1− r)sg(r)dr = 1, (5.5)

1∫
0

r2s+d−1+m(1− r)sg(r)dr = 0, m = 1, . . . , s. (5.6)

The factor |x|2s guarantees the existence and continuity of the derivatives of κ(s)(x) up to the order s at r = 0, and
the factor (1 − |x|)s makes the boundary conditions satisfied. The condition (5.5) yields (5.3). Now we show (5.4).
For σ = 0 inequality (5.4) is obvious, so assume σ > 0. For each y and x there holds∣∣∣∣∣f(y + hx)− f(y)−

σ−1∑
k=1

1

k!

∂kf(y)

∂ek
hk|x|k

∣∣∣∣∣ ⩽ ∥∇σf∥∞
hσ|x|σ

σ!
,

where e is the unit vector along x. Hence, using (5.3) we get∣∣∣∣∫ κ(s)(x)f(y + hx)dx− f(y)

∣∣∣∣ = ∣∣∣∣∫ κ(s)(x)(f(y + hx)− f(y))dx

∣∣∣∣ ⩽
⩽
∣∣∣∣∣
∫

κ(s)(x)

[
σ−1∑
k=1

1

k!

∂kf(y)

∂ek
hk|x|k

]
dx

∣∣∣∣∣+ ∥∇σf∥∞
hσ

σ!

∫
|κ(s)(x)|dx

(all integrals are over |x| < 1). We claim that the first term in the right­hand size is equal to zero. Indeed, put x = rγ,
where 0 < r < 1 and γ varies over Ω. Then for k = 1, . . . , σ − 1 we have∫

|x|<1

κ(s)(x)
∂kf(y)

∂ek
|x|kdx =

1∫
0

r2s(1− r)srd−1rkg(r)dr

∫
Ω

∂kf(y)

∂ekγ
dγ,

that is equal to zero by (5.6). Thus the inequality (5.4) is proved.
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Lemma 5.9. Let Π̃h be a local mapping with kernel µ̃ξ ∈ (Cq(G))∗, q ∈ N ∪ {0}. Let s ⩾ q, s ∈ N, and κ(s) be
given by Lemma 5.8. Then the convolution µξ = µ̃ξ ∗ κ(s) is a continuous function with support in G + B1(0), and
the local mapping Πh with kernel µξ satisfies

∥Π̃hf −Πhf∥ ⩽ Chr∥∇rf∥∞

for each r = q, . . . , s and all f ∈ Cr
per(Rd), where C depends only on d, s, µ̃ξ, and the norm on CM0 .

Proof. For each ξ ∈M0, each h, and η ∈ Zd we have

(Π̃hf)η,ξ − (Πhf)η,ξ = ⟨µ̃ξ − µξ, f(h( · + Tη))⟩ = ⟨µ̃ξ,Φ[f ]⟩,

where Φ[f ] is given by

Φ[f ](r) =

∫
|x|<1

κ(s)(x)f(h(r + Tη + x))dx− f(h(r + Tη)).

For |m| ⩽ q we have DmΦ[f ] = h|m|Φ[Dmf ]. Then by (5.4) with σ = r − |m| we get

sup
r∈Rd

|DmΦ[f ](r)| ⩽ h|m|C(d, s)hr−|m|∥∇r−|m|(Dmf)∥∞ ⩽ hrC(d, s)∥∇rf∥∞.

Equip Cq(G) with the norm
∥g∥Cq(G) = max

|m|⩽q
max
r∈G

|Dmg|.

Then ∥Φ[f ]∥Cq(G) ⩽ hrC(d, s)∥∇rf∥∞ and∣∣∣(Π̃hf)η,ξ − (Πhf)η,ξ

∣∣∣ ⩽ ∥µ̃ξ∥hrC(d, s)∥∇rf∥∞.

Then the inequality to prove is by the definition of the norm on Vper.

5.3. Properties of the matrix exponential
In this subsection we consider a matrix norm induced by a vector norm.305

Lemma 5.10. If A(ϕ) is a holomorphic matrix function at ϕ = ϕ0, then so is exp(A(ϕ)).

This follows from the representation

exp(A(ϕ)) =
1

2πi

∫
γ

ez

zI −A(ϕ)
dz,

where I is the identity matrix and γ is any closed contour such that all eigenvalues of A(ϕ0) lay inside γ.

Lemma 5.11. For each square matrix Y there holds

∥eY − I∥ ⩽ (∥eY ∥+ e− 1)min{1, ∥Y ∥}.

Proof. If ∥Y ∥ ⩾ 1 then
∥eY − I∥ ⩽ ∥eY ∥+ 1 ⩽ ∥eY ∥+ e− 1.

If ∥Y ∥ ⩽ 1 then

∥eY − I∥ =

∥∥∥∥∥Y
∞∑
k=1

Y k−1

k!

∥∥∥∥∥ ⩽ ∥Y ∥
∞∑
k=1

1

k!
= (e− 1)∥Y ∥ ⩽ (∥eY ∥+ e− 1)∥Y ∥.
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Lemma 5.12. Suppose ∥A∥ ⩽ 1 and

f(A) =

∞∑
k=1

Ak−1

k!
. (5.7)

Then ∥(f(A))−1∥ ⩽ 4.

Proof. First,

∥f(A)− I∥ =

∥∥∥∥∥
∞∑
k=2

Ak−1

k!

∥∥∥∥∥ ⩽
∞∑
k=2

∥A∥k−1

k!
⩽

∞∑
k=2

1

k!
= e− 2.

Hence
∥(f(A))−1∥ = ∥(I + (f(A)− I))−1∥ ⩽ 1

1− ∥f(A)− I∥
⩽ 1

1− (e− 2)
⩽ 4.

310

Lemma 5.13. Let A be non­degenerate and ∥A∥ ⩽ 1. Then ∥(eA − I)−1∥ ⩽ 4∥A−1∥.

Proof. For f(A) given by (5.7) we have eA − I = Af(A). Then

∥(eA − I)−1∥ ⩽ ∥(f(A))−1∥ ∥A−1∥ ⩽ 4∥A−1∥.

5.4. Transformation of a matrix to a block­diagonal form
Let Cn×n be the space of complex matrices of size n. Denote by A(Cd,Cn×n) the set of functions from Cd to

Cn×n holomorphic at ϕ = 0. Let σ(Y ) be the spectrum of a matrix Y and κ(Y ) be its condition number, i. e.315

κ(Y ) = ∥Y ∥ ∥Y −1∥.
To proceed, we need to recall some facts from the perturbation theory.

Lemma 5.14 ([26], §1.5.3). Let A ∈ Cn×n, λ ∈ σ(A). Let 0 < ρ < dist(λ, σ(A) \ {λ}) (the distance to the empty
set is assumed to be +∞). Then the matrix

Pλ(A) =
1

2πi

∮
|z−λ|=ρ

(zI −A)−1dz (5.8)

is a projection onto the algebraic eigenspace corresponding toλ. Besides, for λ, µ ∈ σ(A) there holdsPλ(A)Pµ(A) =
δλµPλ(A).

Lemma 5.15 ([26], §2.5.1). Let A(ϕ) ∈ A(Cd,Cn×n). Then the eigenvalues λj(ϕ), j = 1, . . . , n, can be reordered320

so that λj(ϕ) → λj(0) as ϕ→ 0.

ForA(ϕ) ∈ A(Cd,Cn×n) and λ ∈ σ(A(0)) the set of eigenvalues λj(ϕ) of the matrixA(ϕ) such that λj(ϕ) → λ
is referred to as λ­group, and the sum of the corresponding algebraic eigenspaces is the total eigenspace of the λ­group.
The operator Pλ(ϕ) =

∑
Pλj(ϕ)(A(ϕ)), where the sum is over the λ­group, is the total eigenprojection of the λ­

group. It is a projection onto the total eigenspace of the λ­group (see [26], §2.2.1). The sum of all total eigenprojections325

is the identity operator and Pλ(ϕ)Pµ(ϕ) = δλµPλ(ϕ).

Lemma 5.16. Let A(ϕ) ∈ A(Cd,Cn×n) and λ ∈ σ(A(0)). Then Pλ(ϕ) ∈ A(Cd,Cn×n).

Proof. Let ρ = 1
2dist(λ, σ(A(0)) \ {λ}). By continuity in a neighborhood of ϕ = 0 there holds |λj(ϕ)− λ| < ρ for

each λj(ϕ) belonging to the λ­group corresponding to λ and |λj(ϕ)−λ| > ρ otherwise. Thus the total eigenprojection
of this λ­group is

Pλ(ϕ) =
1

2πi

∮
|z−λ|=ρ

(zI −A(ϕ))−1dz. (5.9)

Since the integrand is analytical with respect to ϕ and z over the integral path, we have Pλ(ϕ) ∈ A(Cd,Cn×n).
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Lemma 5.17. For any n ∈ N, K ⩾ 1 there exists Ĉ = Ĉ(n,K) such that for any B ∈ Cn×n satisfying
sup
ν⩾0

∥eνB∥ ⩽ K there holds

|λ(B)|max
|λ(B)|min

⩽ κ(B) ⩽ Ĉ
|λ(B)|max
|λ(B)|min

,

where |λ(B)|max and |λ(B)|min are the maximal and minimal module of the eigenvalues of B.

Proof. The first inequality follows from the fact that any norm of the matrix induced by a vector norm is greater than330

or equal to its spectral radius. The proof of the second inequality is based on the Kreiss matrix theorem [27], see
Lemma 6 and Lemma 8 in [28].

Theorem 5.18 ([28]). For any n ∈ N, K ⩾ 1 there exists C = C(n,K) such that for any B ∈ Cn×n satisfying
sup
ν⩾0

∥eνB∥ ⩽ K there exists a matrix U such that κ(U) ⩽ C, the matrixM = U−1BU is block­diagonal, and each

blockMj ofM satisfies eitherMj = 0 or κ(Mj) ⩽ C.335

Without loss we assume the spectra ofMj do not intersect. Indeed, if two blocksMj have common eigenvalues
then by Lemma 5.17 they can be united into one block with the condition number not greater than the product of the
conditional numbers of the original blocks multiplied by Ĉ.

Theorem 5.19. Let A ∈ A(Cd,Cn×n) and sup
ν⩾0

∥ exp(νA(0))∥ ⩽ K. Let A(0) have zero eigenvalue of al­

gebraic multiplicity n0. Then in a neighborhood of ϕ = 0 there holds A(ϕ) = S(ϕ)M(ϕ)S−1(ϕ) where
S,M, S−1 ∈ A(Cd,Cn×n),

M(ϕ) =


M (1)(ϕ) . . . 0 0

...
. . .

...
...

0 . . . M (m)(ϕ) 0
0 . . . 0 M (0)(ϕ)

 , (5.10)

M (0)(ϕ) is a n0 × n0­matrix,M (0)(0) = 0, κ(M (j)(0)) ⩽ δ for j ̸= 0, ∥S(0)∥ ⩽ δ, ∥S−1(0)∥ ⩽ δ, and δ depends
on n andK only.340

Proof. By Theorem 5.18 there exists a matrix Y such that A(0) = Y BY −1, where B is a block­diagonal matrix with
blocks Bj of size nj , κ(Y ) ⩽ C(n,K), and κ(Bj) ⩽ C(n,K). Denote B(ϕ) = Y −1A(ϕ)Y .

Denote by Pj(ϕ) the sum of the total eigenprojections of the λ­groups for the matrix functionB(ϕ) corresponding
to σ(Bj). By construction

Pj(0) =


0 . . . 0 . . . 0
...

. . .
...

. . .
...

0 . . . I . . . 0
...

. . .
...

. . .
...

0 . . . 0 . . . 0

 ,

where I is the identity matrix of sizenj and its position corresponds to the position ofBj in the matrixB. By continuity
the submatrix of Pj(ϕ) taking the same position as Bj is non­degenerate in a neighborhood of ϕ = 0. Therefore, for
a given j the columns of Pj(ϕ) corresponding to the block Bj form a basis in the sum of algebraic eigenspaces of345

B(ϕ) corresponding to σ(Bj).
Introduce the matrix function S̃(ϕ) composed from these basis columns of all Pj(ϕ). By construction the matrix

M(ϕ) = S̃−1(ϕ)B(ϕ)S̃(ϕ) has the block­diagonal form (5.10), where M (j)(0) = Bj and S̃(0) = I . The matrix
S̃(ϕ) is analytical in a neighborhood of ϕ = 0 since all of its columns are analytical by Lemma 5.16.

By continuity det S̃(ϕ) ̸= 0 in a neighborhood of ϕ = 0. The elements of S̃−1(ϕ) are products of elements of350

S̃(ϕ) divided by det S̃(ϕ), so S̃−1(ϕ) is also holomorphic. Hence so is M(ϕ). Thus we get representation (5.10)
with S(ϕ) = Y S̃(ϕ).
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6. Spectral analysis

The purpose of this section is to show that the error estimate for an arbitrary smooth solution is equivalent to the
error estimate for a single complex exponent. This allows us to reduce our further analysis to a single wave and thus355

to a finite­dimensional analysis.

6.1. The basics
Recall that A = {α ∈ Rd : T ∗α/π ∈ Qd}. For β > 0 denote Aβ = {ϕ ∈ A : T ∗ϕ ∈ [−β, β)d}. Let

l2(Aπ,CM0

) be the space of maps w of Aπ to CM0

such that
∑
ϕ ∥wϕ∥2 < ∞ with the scalar product (w,w′) =∑

ϕ(wϕ, w
′
ϕ). Let VF ⊂ l2(Aπ,CM0

) be the space of mapsw such thatw(ϕ) = 0 for all but a finite numberϕ ∈ Aπ .360

Clearly l2(Aπ,CM0

) is a Hilbert space, and VF is its dense subspace. Also denote U = (T ∗)−1.
Let F : Vper → VF be the mapping taking each f ∈ V N

per to

F [f ](ϕ) =
1

Nd

∑
η∈{0,...,N−1}d

fη exp(−iϕ · Tη) for ϕ = 2πU
k

N
, k ∈ Zd ∩ [−N/2, N/2)d, (6.1)

and F [f ](ϕ) = 0 otherwise. Note that f ∈ V N
per also belongs to f ∈ V nN

per for each n ∈ N, but this does not affect the
value F [f ]. It is easy to see that F is a linear mapping. This mapping is invertible. Indeed, for w ∈ VF let F−1[w] be
the sequence with components

(F−1[w])η =
∑
ϕ∈Aπ

w(ϕ) exp(iϕ · Tη). (6.2)

Obviously, F−1[w] ∈ V N
per, where N is the product of all denominators of ϕ such that w(ϕ) ̸= 0 (by definition, the

number of such ϕ is finite). It is easy to see that F−1[F [f ]] = f and F [F−1[w]] = w.
Denote

δϕ1,ϕ2
=

{
1, ϕ1 = ϕ2;
0, otherwise;

δmodϕ1,ϕ2
=
∑
c∈Zd

δϕ1,ϕ2+2πUc =

{
1, ∃c ∈ Zd : ϕ1 = ϕ2 + 2πUc;
0, otherwise.

Lemma 6.1. If f ∈ Vper has components fη = y exp(iϕ · Tη) with some ϕ ∈ A, y ∈ CM0 , then

F [f ](ϕ′) = yδmodϕ,ϕ′ (6.3)

for each ϕ′ ∈ Aπ .

The proof is obvious.365

Lemma 6.2. For f, g ∈ Vper there holds (F [f ], F [g]) = (f, g) and thus F is an isometry: ∥F [f ]∥ = ∥f∥.

Proof. Let f ∈ V N1
per , g ∈ V N2

per , then f, g ∈ V N
per with N = N1N2. We have

(F [f ], F [g]) =
∑

k∈Zd∩[−N/2,N/2)d

(F [f ](2πUk/N), F [g](2πUk/N)) =

=
1

N2d

∑
η∈{0,...,N−1}d

∑
ζ∈{0,...,N−1}d

(fη, gζ)
∑

k∈Zd∩[−N/2,N/2)d

exp
(
2πi

k · (η − ζ)
N

)
.

The sum over k is equal to zero for η ̸= ζ and to Nd for η = ζ, thus

(F [f ], F [g]) =
1

Nd

∑
η∈(0,...,N−1)d

(fη, gη) = (f, g).
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Corollary 6.3. The space Vper is incomplete.

Proof. Since F is a bijective isometry from Vper to VF , and the latter is incomplete, so is the former.

For each ϕ ∈ Cd put by definition

Z(ϕ) =
∑

η∈S⊂Zd

Zη exp (iϕ · Tη) , L(ϕ) =
∑

η∈S⊂Zd

Lη exp (iϕ · Tη) . (6.4)

Functions Z(ϕ) and L(ϕ) are periodic with the periodic cell (T ∗)−1[−π, π)d.370

Lemma 6.4. Let Z and L be given by (2.9). Then for f ∈ Vper there holds

F [Zf ](ϕ) = Z(ϕ)F [f ](ϕ), F [Lf ](ϕ) = L(ϕ)F [f ](ϕ), (6.5)
F [exp(−Z−1Lt/h)f ](ϕ) = exp(−Z−1(ϕ)L(ϕ)t/h)F [f ](ϕ). (6.6)

Proof. By linearity it is enough to check this for fη = exp(iϕ · Tη)y, with some ϕ ∈ Aπ , y ∈ CM0

. Then

(Zf)η =
∑
ζ∈S

Zζ exp(iϕ · T (η + ζ))y = exp(iϕ · Tη)Z(ϕ)y,

so F [Zf ](ϕ′) = Z(ϕ)yδϕ,ϕ′ = Z(ϕ)F [f ](ϕ′). The proof of the second identity is similar. To prove (6.6), note that
u(t) = exp(−Z−1Lt/h)f is the solution of (2.10) with the initial data f . Applying F to (2.10) and using (6.5) we
get

Z(ϕ)
d

dt
F [u(t)](ϕ) +

1

h
L(ϕ)F [u(t)](ϕ) = 0, F [u(0)](ϕ) = F [f ](ϕ).

Solving this equation we get (6.6).

6.2. Mappings to the mesh space
For ϕ ∈ Rd there holds eiϕ·r ∈ L2,per(Rd) iff ϕ ∈ A. For a homogeneous mapping Πh and ϕ ∈ A put by

definition
v(ϕ,Πh) =

(
Π1e

iϕ·r)
0
, (6.7)

where the subscript 0 means the block component at η = 0. If Πh is a local mapping, then (6.7) defines v(ϕ,Πh) for
each ϕ ∈ Cd, and v(ϕ,Πh) is a holomorphic function.

Lemma 6.5. Let ϕ,ψ ∈ A, ϕ′ ∈ Aπ , andΠh be a homogeneous mapping. Then forα = ϕ/h, β = ψ/h there holds
Πhe

iα·r ∈ Vper and
F [Πhe

iα·r](ϕ′) = δmodϕ,ϕ′ v(ϕ,Πh), (6.8)

(Πhe
iα·r,Πhe

iβ·r) = δmodϕ,ψ (v(ϕ,Πh), v(ψ,Πh)). (6.9)

Proof. By definition,

(Πhe
iα·r)η = (Πhe

iα·(r+hTη))0 = eiα·hTη(Πhe
iα·r)0 = eiϕ·Tη v(ϕ,Πh).

Applying Lemma 6.1 we get (6.8). By Lemma 6.2

(Πhe
iα·r,Πhe

iβ·r) =
∑
ψ′∈Aπ

(F [Πhe
iα·r](ψ′), F [Πhe

iβ·r](ψ′)) =

=
∑
ψ′∈Aπ

δmodϕ,ψ′δmodψ,ψ′(v(ϕ,Πh), v(ψ,Πh)) = δmodϕ,ψ (v(ϕ,Πh), v(ψ,Πh)).

375
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Lemma 6.6. Let G ⊂ Aπ be symmetric with respect to the origin. Let v be a map of G to CM0 such that
v(−ϕ) = v(ϕ). Then there exists a homogeneous mapping Πh of L2,per(Rd) to Vper such that v(ϕ) = v(ϕ,Πh)
for ϕ ∈ G and ∥Πh∥ ⩽ sup

G
∥v(ϕ)∥.

Proof. Extend v to Aπ \ G by zero. Let f ∈ L2,per(Rd) have Fourier series
∑
α∈A

fα exp (iα · r). Note that there is

only finitely many nonzero fα in any bounded part of the frequency domain. Definewf ∈ VF bywf (ϕ) = v(ϕ)fϕ/h.
Let Πh is a linear mapping of L2,per(Rd) to Vper defined by Πhf = F−1[wf ]. Since

∥Πhf∥2 = ∥F−1[wf ]∥2 = ∥wf∥2 =
∑
ϕ∈G

∥v(ϕ)fϕ/h∥2 ⩽ sup
G

∥v(ϕ)∥2
∑
ϕ∈A

|fϕ|2 = sup
G

∥v(ϕ)∥2∥f∥2,

there holds ∥Πh∥ ⩽ sup
G

∥v(ϕ)∥.

Nowwe check thatΠh is a homogeneous mapping. To prove (P3), consider a real­valued function f ∈ L2,per(Rd).
Then f−α = fα and wf (−ϕ) = wf (ϕ). From (6.2), F−1[wf ] is real­valued, i. e. (P3) is proved. To prove (P1) and
(P2), it is enough to consider a single exponent f(r) = exp(iα · r), α ∈ A. Clearly,

(Πhe
iα·r)η =

{
v(αh) exp (iαh · Tη) , αh ∈ G,

0, αh /∈ G.
(6.10)

For
g(r) = f(r + hTζ) = exp(iα · hTζ)f(r),

we have

(Πhg)η = exp(iα · hTζ) exp(ihα · Tη)v(hα) = exp(ihα · T (η + ζ))v(hα) = (Πhf)η+ζ .

The property (P1) is proved. For g(r) = f(r/h) = exp(iα · r/h) we have

(Πhg)η = exp(ihα · Tη/h)v(hα/h) = (Π1f)η.

The property (P2) is proved.380

The property v(ϕ,Πh) = v(ϕ) follows directly from (6.10).

Lemma 6.7. Let Πh and Ph be local mappings with the kernels µξ and µ̂ξ, correspondingly, and ⟨µ̂ξ, 1⟩ ̸= 0 for
each ξ ∈ M0. Suppose W (ϕ) maps a neighborhood of zero in Rd to CM0 , has q + 1 continuous derivatives at
ϕ = 0, satisfiesW (−ϕ) =W (ϕ), and ∥v(ϕ,Πh)−W (ϕ)∥ = O(|ϕ|p) as ϕ→ 0, where p, q ∈ N. Then there exist
real­valued diagonal matrices C(m), p ⩽ |m| ⩽ q, such that for the mapping Π

(p,q)
h given by (2.12) there holds

v(ϕ,Π
(p,q)
h ) =W (ϕ) +O(|ϕ|q+1). (6.11)

Proof. Let the diagonal matrix C(ϕ) be defined in a neighborhood of ϕ = 0 by

W (ϕ)− v(ϕ,Πh) = C(ϕ)v(ϕ,Ph). (6.12)

Since (v(ϕ,Ph))ξ → ⟨µ̂ξ, 1⟩ ̸= 0 asϕ→ 0, then in a neighborhood ofϕ = 0 the matrix function C(ϕ) is well­defined
and ∥C(ϕ)∥ = O(|ϕ|p). Put

C(m) =
1

m!

1

i|m| D
mC(ϕ)|ϕ=0 . (6.13)

Taking complex conjugation from (6.12) we get

W (−ϕ)− v(−ϕ,Πh) = C(ϕ)v(−ϕ,Ph),
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thus C(ϕ) = C(−ϕ) and

C(m) =
1

m!

1

(−i)|m| D
m(C(ϕ))

∣∣∣
ϕ=0

=
1

m!

1

(−i)|m| D
m(C(−ϕ))|ϕ=0 = C(m),

so C(m) is real­valued. By definition

v(ϕ,Π
(p,q)
h ) = v(ϕ,Πh) +

 ∑
p⩽|m|⩽q

C(m)(iϕ)m

 v(ϕ,Ph).

Since ∥C(ϕ)∥ = O(|ϕ|p), there holds C(m) = 0 whenever |m| < p. Thus the sum inside the brackets is the Taylor
polynomial of the function C(ϕ) of order q and

v(ϕ,Π
(p,q)
h ) = v(ϕ,Πh) + (C(ϕ) +O(|ϕ|q+1))v(ϕ,Ph).

Combining this with (6.12) we get (6.11).

Lemma 6.8. Let Πh and Ph be local mappings with the kernels µξ and µ̂ξ, correspondingly, and ⟨µ̂ξ, 1⟩ ̸= 0 for
each ξ ∈ M0. Let e ∈ Ω̊. Let W (ψ) have q + 1 continuous derivatives at ψ = 0, W (−ψ) = W (ψ), and
∥v(ψe,Πh)−W (ψ)∥ = O(|ψ|p) as ψ → 0, where p, q ∈ N. Then there exist real­valued diagonal matrices C(m)

e ,
m = p, . . . , q, such that for the mapping Π

(p,q)
h,e given by (2.13) there holds

v(ψe,Π
(p,q)
h,e ) = w(ψ) +O(|ψ|q+1).

The proof is similar to the previous Lemma.

6.3. Truncation error, stability, and accuracy
We need the following auxiliary result.385

Lemma 6.9. Let Πh be a homogeneous mapping of Hq
per(Rd) (or Cq

per(Rd)) to Vper. Then the operator F 1
h defined

as F 1
hf = hϵh(f,Πh) is a homogeneous mapping of Hq+1

per (Rd) (or Cq+1
per (Rd)). For each t ⩾ 0 the operator F 2

h

defined as F 2
hf = εh(t, f,Πh) is a homogeneous mapping of Hq

per(Rd) (or Cq
per(Rd)) to Vper. Besides,

∥F 1
h∥(q+1,h,∗) ⩽ ∥Πh∥(q,h,∗)(∥Z∥|ω|+ ∥L∥), ∥F 2

h∥(q,h,∗) ⩽ (K + 1)∥Πh∥(q,h,∗),

whereK is the stability constant of the scheme, and ∗ means either nothing or infinity depending on the case.

Proof. By the definitions of ϵh(f,Πh) (see (2.14)) and εh(t, f,Πh) (see (2.15)) it immediately follows that the map­
pings F 1

h and F 2
h are homogeneous.

For each v0 ∈ Hq+1
per (Rd) (or Cq+1

per (Rd)) by Lemma 5.7 there holds

∥F 1
hv0∥ = ∥hϵh(v0,Πh)∥ = ∥−hZΠh(ω · ∇v0) + LΠhv0∥ ⩽ (∥Z∥|ω|+ ∥L∥)∥Πh∥(q,h,∗)∥v0∥(q+1,h,∗).

Now let v0 ∈ Hq
per(Rd) (or Cq

per(Rd)), v(t, r) = v0(r − ωt), and u(t) be the solution of (2.8) with the initial
data u(0) = Πhv0. Using ∥v0∥ = ∥v(t, · )∥ we get

∥F 2
hv0∥ = ∥εh(t, v0,Πh)∥ = ∥u(t)−Πhv(t, · )∥ ⩽ K∥Πhv0∥+ ∥Πhv(t, · )∥ ⩽ (K + 1) ∥Πh∥(q,h,∗) ∥v0∥(q,h,∗),

where we have used the stability condition.
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By definition, put
A(ϕ) = −Z−1(ϕ)L(ϕ) + iω · ϕI, (6.14)

ϵ̂(ϕ,Πh) = A(ϕ)v(ϕ,Πh) (6.15)

ε̂(ϕ, ν,Πh) =
(
eνA(ϕ) − I

)
v(ϕ,Πh). (6.16)

where I is the identity matrix of size |M0|, Z(ϕ) and L(ϕ) are given by (6.4), and v(ϕ,Πh) is given by (6.7).390

Lemma 6.10. Let Πh be a homogeneous mapping, α ∈ A, ϕ = αh. Then there holds

∥ϵh(eiα·r,Πh)∥ =
1

h
∥Z(ϕ) ϵ̂(ϕ,Πh)∥, (6.17)

∥εh(t, eiα·r,Πh)∥ = ∥ε̂(ϕ, t/h,Πh)∥. (6.18)

Proof. First we obtain the spectral representation of the truncation error. By (6.5) and (6.8), for ϕ′ ∈ Aπ ,

F [ϵh(e
iα·r,Πh)](ϕ

′) =

(
−(ω · iα)Z(ϕ′) +

1

h
L(ϕ′)

)
F [Πhe

iα·r](ϕ′) =

= − 1

h
Z(ϕ′)

(
(ω · iαh)I − Z−1(ϕ′)L(ϕ′)

)
δmodϕ,ϕ′ v(ϕ,Πh) = − 1

h
Z(ϕ)ϵ̂(ϕ,Πh)δ

mod
ϕ,ϕ′ .

(6.19)

The last identity is due to the 2πUZd­periodicity of L and Z. Using Lemma 6.2 we get (6.17).
Now we move to the solution error. By definition,

εh(t, e
iα·r,Πh) = u(t)− e−iα·ωt Πhe

iα·r,

where u(t) = exp(−Z−1Lt/h)Πhe
iα·r (see (2.15)). By (6.6), for ϕ′ ∈ Aπ there holds

F [u(t)](ϕ′) = exp
(
−Z−1(ϕ′)L(ϕ′)

t

h

)
F [Πhe

iα·r](ϕ′).

Thus by (6.8) we get

F [εh(t, e
iα·r,Πh)](ϕ

′) =

[
exp

(
−Z−1(ϕ′)L(ϕ′)

t

h

)
− exp (−iα · ωt)

]
δmodϕ,ϕ′ v(ϕ,Πh).

By the 2πUZd­periodicity of Z(ϕ) and L(ϕ) we replace ϕ′ by ϕ in their arguments and finally obtain

F [εh(t, e
iα·r,Πh)](ϕ

′) = exp (−iα · ωt) ε̂(ϕ, t/h,Πh)δ
mod
ϕ,ϕ′ .

Now Lemma 6.2 yields (6.18).

Lemma 6.11. Consider a scheme of the form (2.8) and a homogeneous mapping Πh. Let the error estimate (2.17)
hold. Then for ϕ ∈ A there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ C1|ϕ|P + C2ν|ϕ|Q+1 + C3|ϕ|R, (6.20)

where C1, C2, C3 are the same as in (2.17). If Πh is a local mapping, then (6.20) holds for each ϕ ∈ Rd.

Proof. Using (2.17) for v0 = eiα·r, α = ϕ/h, we get

∥εh(t, eiα·r,Πh)∥ ⩽ C1h
P |α|P + C2th

Q|α|Q+1 + C3h
R|α|R,

and it remains to use Lemma 6.10. If Πh is a local mapping, then (6.20) extends to ϕ ∈ Rd by continuity.
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Lemma 6.12. The optimal value of the order of the truncation error in the sense of a local mapping is an integer.395

Proof. By Lemma 6.10 this order is less by one then the order of smallness of ϵ̂(ϕ,Πh) as ϕ tends to zero, which is
integer since ϵ̂(ϕ,Πh) is a holomorphic function of ϕ.

Lemma 6.13. A scheme (2.8) is stable with the constantK if and only if for each ϕ ∈ A and each ν > 0 there holds

∥exp (A(ϕ)ν)∥ ⩽ K. (6.21)

Proof. For an operator Y : VF → VF such that (Y w)(ϕ) = y(ϕ)w(ϕ) there obviously holds ∥Y ∥ =
supϕ∈Aπ

∥y(ϕ)∥. Using this fact for y(ϕ) = exp(−Z−1(ϕ)L(ϕ)t/h) and Lemmas 6.2 and 6.4, we get∥∥∥∥exp(−Z−1L
t

h

)∥∥∥∥ = sup
ϕ∈Aπ

∥∥∥∥exp(−Z−1(ϕ)L(ϕ)
t

h

)∥∥∥∥ .
By continuity and 2πUZd­periodicity of Z−1(ϕ) and L(ϕ), and finally by the definition of A(ϕ) we get∥∥∥∥exp(−Z−1L

t

h

)∥∥∥∥ = sup
ϕ∈A

∥∥∥∥exp(−Z−1(ϕ)L(ϕ)
t

h

)∥∥∥∥ =

= sup
ϕ∈A

∥∥∥∥exp(A(ϕ) th
)
exp(−iω · ϕI)

∥∥∥∥ = sup
ϕ∈A

∥∥∥∥exp(A(ϕ) th
)∥∥∥∥ .

Taking the supremum over t, h > 0, we get

sup
t,h>0

∥∥∥∥exp(−Z−1L
t

h

)∥∥∥∥ = sup
ν>0

sup
ϕ∈A

∥exp (A(ϕ)ν)∥ .

It remains to recall the definition of the stability constant of a scheme.

6.4. From a sine wave to an arbitrary smooth solution
The section is a toolbox for extending various estimates from single Fourier modes to arbitrary smooth solutions.400

Lemma 6.14. Let Fh be a homogeneous mapping of Hr
per(Rd) to Vper, r ⩾ 0. Let p(s) =

∑J
j=1 cjs

pj with some
J ∈ N and cj , pj ⩾ 0. Suppose there exists 0 < β ⩽ π such that for each h and each α ∈ Aβ/h there holds

∥Fhe
iα·r∥ ⩽ p(|α|).

Then for each w ∈ H
max{r,p1,...,pJ}
per (Rd) there holds

∥Fhw∥ ⩽
J∑

j=1

cj∥∇pjw∥+ 2hrcr∥Fh∥(r,h)∥∇rw∥, (6.22)

where c = 1 + β−1∥T ∗∥2 and ∥Fh∥(r,h) = sup ∥Fhf∥/∥f∥(r,h).

Proof. Consider a function w ∈ H
max{r,p1,...,pJ}
per (Rd). Since w is periodic it has the Fourier representation (2.4):

w =
∑
α∈A

wα exp (iα · r) .

Recall that Aβ/h = {α ∈ A : T ∗α ∈ [−β/h, β/h)d}. By definition, put

SN (r) =
∑

α∈Aβ/h

wα exp (iα · r) .
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Obviously, Fhw = FhSN + Fh(w − SN ). By Lemma 6.5 for α,α′ ∈ Aβ/h, α ̸= α′ there holds
(Fhe

iα·r, Fhe
iα′·r) = 0. By assumption and using the Minkowski inequality for sums (the triangle inequality for l2)

we get

∥FhSN∥2 =
∑

α∈Aβ/h

|wα|2 ∥Fh exp (iα · r)∥2 ⩽
∑

α∈Aβ/h

|wα|2 (p(|α|))2 =

=
∑

α∈Aβ/h

 J∑
j=1

cj |wα| |α|pj

2

⩽

 J∑
j=1

cj

 ∑
α∈Aβ/h

|wα|2|α|2pj

1/2


2

.

Extending the limits of the sum to α ∈ A we obtain

∥FhSN∥ ⩽
J∑

j=1

cj

(∑
α∈A

|wα|2|α|2pj

)1/2

=

J∑
j=1

cj∥∇pjw∥. (6.23)

Now consider Fh(w − SN ). By the definition of SN we have

w − SN =
∑

α∈A\Aβ/h

wα exp (iα · r) .

For α ∈ A \ Aβ/h we have

|α|−1 ⩽ ∥T ∗∥2 |T ∗α|−1 ⩽ ∥T ∗∥2 ∥T ∗α∥−1
∞ ⩽ hβ−1∥T ∗∥2 ⩽ hc.

Thus
∥w − SN∥2 =

∑
α∈A\Aβ/h

|wα|2 =
∑

α∈A\Aβ/h

|wα|2|α|2r

|α|2r
⩽ (hc)2r∥∇rw∥2.

Taking into account that c ⩾ 1 we obtain

∥w − SN∥2(r,h) ⩽ ∥∇rw∥2
(
(hc)2r + h2r

)
⩽ 2∥∇rw∥2(hc)2r

and
∥Fh(w − SN )∥ ⩽

√
2 ∥F∥(r,h)∥∇rw∥hrcr.

Combining this (6.23) we get (6.22).

Theorem 6.15. Consider a scheme of the form (2.8) and a homogeneous mapping Πh. [Let e ∈ Ω̊.] Suppose there
exist C ⩾ 0, PA ⩾ −1, and 0 < β ⩽ π such that there holds

∥ϵ̂(ϕ,Πh)∥ ⩽ C|ϕ|PA+1 (6.24)

for each |ϕ| ∈ Aβ [aligned with e].
1) If Πh is a bounded homogeneous mapping of Hq

per(Rd) to Vper, then for each v0 ∈ Hr+1
per[,e](R

d) and
r ⩾ max{PA, q} there holds

∥ϵh(v0,Πh)∥ ⩽ ChPA∥∇PA+1v0∥+ C̃hr∥∇r+1v0∥, (6.25)

where C̃ = 4cr+1∥Πh∥(q,h)(∥Z∥|ω|+ ∥L∥), c = 1 + β−1∥T ∗∥2.
2) If Πh is a local mapping with µξ ∈ (Cq(G))∗, q ∈ N ∪ {0}, then there exists C̃ such that for each

v0 ∈ Cr+1
per[,e](R

d), r ∈ N, r ⩾ max{PA, q}, there holds

∥ϵh(v0,Πh)∥ ⩽ ChPA∥∇PA+1v0∥+ C̃hr∥∇r+1v0∥∞.

405
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Proof. If e is specified, let T : L2,per(Rd) → L2,per(Rd) be the projection operator taking each eiα·r to eiα·r if α
is aligned with e and to zero otherwise. If e is not specified, T is the identity operator. Clearly, ∥T∥ = 1 and maps
Hσ

per(Rd) to Hσ
per(Rd) for each σ.

To prove the first statement, put Fhv0 = hϵh(v0,Πh). By (6.24) and Lemma 6.10 we have ∥Fhe
iα·r∥ ⩽

C|hα|PA+1 for each α ∈ Aβ/h [aligned with e]. By Lemma 6.9 we have ∥Fh∥(q+1,h) ⩽ ∥Πh∥(q,h)(∥Z∥|ω|+ ∥L∥).
Since r ⩾ q then by Lemma 5.6 we have ∥Fh∥(r+1,h) ⩽ 2∥Fh∥(q+1,h). Since ∥T∥ = 1 we have

∥FhT∥(r+1,h) ⩽ 2∥Πh∥(q,h)(∥Z∥|ω|+ ∥L∥).

Using Theorem 6.14 for the mapping FhT and p(s) = C(hs)PA+1 we get (6.25).
Now we prove the second statement. By Lemma 5.9 there exists a local mapping Π̃h with µ̃ξ ∈ L2(G̃), G̃ =

G + B1(0), such that for k ∈ {r, r + 1} and each f ∈ Ck
per(Rd) there holds ∥Π̃hf − Πhf∥ ⩽ chk∥∇kf∥∞. By

Lemma 2.3, Π̃h is a bounded homogeneous mapping of L2,per(Rd) to Vper. Then for each f ∈ Cr+1
per (Rd) there holds

∥ϵh(f, Π̃h)− ϵh(f,Πh)∥ ⩽ ∥Z∥ ∥(Π̃h −Πh)(ω · ∇)f∥+ h−1∥L∥ ∥(Π̃h −Πh)f∥ ⩽
⩽ chr∥Z∥ ∥∇r(ω · ∇)f∥∞ + chr∥L∥ ∥∇r+1f∥∞ ⩽ chr(∥Z∥ |ω|+ ∥L∥)∥∇r+1f∥∞.

(6.26)

The last inequality in this chain is by Lemma 5.7. Particularly, this holds for f = eiα·r, so by the triangle inequality
for each α ∈ Aβ/h [aligned with e] we get

∥ϵh(eiα·r, Π̃h)∥ ⩽ C|α|PA+1hPA + c̃|α|r+1hr.

Put Fhv0 = hϵh(v0, Π̃h). Since ∥T∥ = 1, by Lemma 5.6 and Lemma 6.9 we have

∥FhT∥(r+1,h) ⩽ ∥Fh∥(r+1,h) ⩽ ∥Π̃h∥(q,h)(∥Z∥|ω|+ ∥L∥) ⩽ ∥Π̃h∥(∥Z∥|ω|+ ∥L∥).

Using Lemma 6.14 for the mapping FhT and p(s) = C(hs)PA+1 + c̃(hs)r+1 we get

∥ϵh(Tv0, Π̃h)∥ ⩽ ChPA∥∇PA+1v0∥+ C̃hr∥∇r+1v0∥.

From (6.26) by the triangle inequality for each v0 ∈ Cr+1
per[,e](R

d) we obtain

∥ϵh(v0,Πh)∥ ⩽ ∥ϵh(v0, Π̃h)∥+ ĉhr∥∇r+1v0∥∞ ⩽ ChPA∥∇PA+1v0∥+ Ĉhr∥∇r+1v0∥∞.

In the last inequality we used the inequality ∥∇r+1v0∥ ⩽ ∥∇r+1v0∥∞.410

Lemma 6.16. Consider a scheme of the form (2.8) and a local mapping Πh with µξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗),
q ∈ N ∪ {0}. [Let e ∈ Ω̊.] Suppose for ϕ ∈ Aβ [aligned with e] there holds ϵ̂(ϕ,Πh) = 0. Then for each
v0 ∈ Hq+1

per[,e](R
d) (or Cq+1

per[,e](R
d)), there holds ϵh(v0,Πh) = 0.

Proof. By assumption

y(ϕ) := Z(ϕ)ϵ̂(ϕ,Πh) = (−L(ϕ) + iω · ϕZ(ϕ)) v(ϕ,Πh) ≡ 0

for ϕ ∈ Aβ [aligned with e]. If e is not defined, y is an entire function of ϕ, therefore y ≡ 0 on Cd by the uniqueness
theorem for a holomorphic function of several complex variables and thus ϵ̂(ϕ,Πh) = Z−1(ϕ)y(ϕ) = 0 for ϕ ∈ Rd.415

If e is defined, the function y(eψ) is an entire function of ψ, thus y(eψ) = 0 for each ψ ∈ C and so ϵ̂(eψ,Πh) = 0
for ψ ∈ R. By Lemma 6.10 for each α ∈ A [aligned with e] there holds ϵh(eiα·r,Πh) = 0. Since the linear span
of eiα·r, α ∈ A, is dense in Hr+1

per (Rd) and Cr+1
per (Rd), and the linear span of eiα·r, α ∈ A and aligned with e, is

dense inHr+1
per,e(Rd) and Cr+1

per,e(Rd), the statement to prove is by boundedness of the linear operator ϵh( · ,Πh) in the
corresponding space (see Lemma 6.9).420
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Theorem 6.17. Consider a stable scheme of the form (2.8) and a homogeneous mapping Πh. Let P,Q,C1, C2 ⩾ 0.
[Let e ∈ Ω̊.] Assume for all ϕ ∈ Aβ , β ∈ (0, π], [aligned with e] and all ν ⩾ 0 there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ C1|ϕ|P + C2ν|ϕ|Q+1. (6.27)

1) If Πh is a bounded homogeneous mapping of Hq
per(Rd) to Vper then there exists C̃ such that for each initial data

v0 ∈ Hr
per[,e](R

d), r ⩾ max{Q+ 1, P, q}, there holds

∥εh(t, v0,Πh)∥ ⩽ C1h
P ∥∇P v0∥+ C2th

Q∥∇Q+1v0∥+ C̃rhr∥∇rv0∥. (6.28)

2) IfΠh is a local mapping with kernel µξ ∈ (Cq(G))∗, q ∈ N∪{0}, then then there exists C̃ such that for each initial
data v0 ∈ Cr

per[,e](R
d), r ⩾ max{⌈Q⌉+ 1, ⌈P ⌉, q}, there holds

∥εh(t, v0,Πh)∥ ⩽ C1h
P ∥∇P v0∥+ C2th

Q∥∇Q+1v0∥+ C̃hr∥∇rv0∥∞. (6.29)

ForQ = +∞ the terms with C2 vanish and the expression for r is replaced by r = max{P, q} (or r = max{⌈P ⌉, q}).
The constants C̃ in 1) and 2) depend only on Πh, r, T, β,K, and the norm on CM0 .

Proof. By (6.18) for each t > 0, each h, and each α ∈ Aβ/h [aligned with e] there holds

∥εh(t, eiα·r,Πh)∥ = ∥ε̂(hα, t/h,Πh)∥ ⩽ C1h
P |α|P + C2th

Q|α|Q+1.

Let T be the same as in Theorem 6.15.
To prove the first statement, put Fhv0 = εh(t,Tv0,Πh). By Lemma 6.9

∥Fh∥(r,h) ⩽ (K + 1)∥Πh∥(r,h) ⩽ 2(K + 1)∥Πh∥(q,h),

whereK is the stability constant. Then by Lemma 6.14 with p(s) = C1(hs)
P + C2th

QsQ+1 we have (6.28).
Now we prove the second statement. By Lemma 5.9 there exists a local mapping Π̃h : L2,per(Rd) → Vper with

kernel µ̃ξ ∈ L2(G̃), G̃ = G + B1(0), such that for each f ∈ Cr
per(Rd) there holds ∥Π̃hf − Πhf∥ ⩽ chr∥∇rf∥∞

with c = c(d, r,Πh). In particular, ∥Π̃he
iα·r−Πhe

iα·r∥ ⩽ chr|α|r. By construction and Lemma A.4, ∥Π̃h∥ depends
only on µξ and the norm on CM0

. By the triangle inequality and stability we have

∥εh(t, eiα·r, Π̃h)∥ ⩽ ∥εh(t, eiα·r,Πh)∥+ (K + 1)∥(Π̃h −Πh)e
iα·r∥ ⩽

⩽ C1|α|PhP + C2|α|Q+1thQ + c(K + 1)|α|rhr.

Put Fhv0 = εh(t,Tv0, Π̃h). By Lemma 6.9 we have

∥Fh∥(r,h) ⩽ (K + 1)∥Π̃h∥(r,h) ⩽ (K + 1)∥Π̃h∥.

Then by Lemma 6.14 with p(s) = C1(hs)
P + C2th

QsQ+1 + c(K + 1)(hs)r we have

∥εh(t, v0, Π̃h)∥ ⩽ C1h
P ∥∇P v0∥+ C2th

Q∥∇Q+1v0∥+ c̃hr∥∇rv0∥,

where c̃ depends only on Πh, r, T, β,K, and the norm on CM0

. By the triangle inequality and stability

∥εh(t, v0,Πh)∥ ⩽ ∥εh(t, v0, Π̃h)∥+K∥Π̃hv0 −Πhv0∥+ ∥Π̃hv(t, · )−Πhv(t, · )∥

where v(t, r) = v0(t− ω · r). From here, (6.29) easily follows.425
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6.5. Miscellaneous facts
Corollary 6.18. Let Πh be a bounded homogeneous mapping of Hs

per(Rd) to Vper or a local mapping with
µξ ∈ (Cs(G))∗. Let the scheme (2.8) be stable and possess the formal order of accuracy P and the long­time simu­
lation order Q on Hr

per(Rd) (or C⌈r⌉
per(Rd)), r ⩾ max{Q+ 1, s} (or r ⩾ max{P, s} if Q = ∞). Then for each p and

q such that 0 < p ⩽ P and p ⩽ q ⩽ Q the scheme possesses the formal order p and the long­time simulation order q430

on Hr
per(Rd) (or C⌈r⌉

per(Rd)). If q < Q = ∞ we additionally assume q ⩽ r − 1.

Proof. Let the scheme possess the formal order of accuracy P and the long­time simulation order Q. Then by
Lemma 6.11 for all ϕ ∈ Rd and ν ⩾ 0 we have

∥ε̂(ϕ, ν,Πh)∥ ⩽ C1|ϕ|P + C2ν|ϕ|Q+1 + C3|ϕ|R.

Hence, in a neighborhood of ϕ = 0 we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ 2C1|ϕ|p + C2ν|ϕ|q+1.

By Theorem 6.17 we obtain that the scheme possesses the formal order of accuracy p and the long­time simulation
order q on Hr

per(Rd) (or C⌈r⌉
per(Rd)). For Q = ∞ the proof remains valid if we drop the terms with C2.

Corollary 6.19. Consider a stable scheme of the form (2.8) and a bounded homogeneous mapping Πh of Hq
per(Rd)

(or Cq
per(Rd)) to Vper. Then the following two statements are equivalent.435

(Y1) The scheme possesses the formal order of accuracy P and the long­time simulation order Q.
(Y2) For each e ∈ Ω̊ the scheme possesses a error estimate of the form

∥εh(t, v0,Πh)∥ ⩽ C1h
P ∥∇P v0∥+ C2th

Q∥∇Q+1v0∥+ C3h
r∥∇rv0∥∗ (6.30)

for v0 ∈ Hr
per,e(Rd) , r ⩾ max{Q+1, P, q}, (or v0 ∈ Cr

per,e(Rd), r ⩾ max{⌈Q⌉+1, ⌈P ⌉, q}), where C1, C2,
and C3 are independent of e, and ∥ · ∥∗ means either ∥ · ∥ or ∥ · ∥∞ depending on the case.

Proof. The implication (Y1) to (Y2) is obvious. Conversely, assume (Y2). Taking (6.30) for v0 = exp(iϕ · r/h), by
(6.18) we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ C1|ϕ|P + C2ν|ϕ|Q+1 + C3|ϕ|r

for each ϕ ∈ A. Since r ⩾ P , for ϕ ∈ Aπ there holds (6.27) with another C1. It remains to use Theorem 6.17.

Lemma 6.20. Let f(x) : R → Cn be analytical at x = 0 and satisfy ∥f(1/k)∥ ⩽ g(1/k) for each k ∈ N where440

g(x) ∈ C1(R) is a function such that g(0) = 0 and g′(x) > 0 for 0 < x < 1. Then there exists δ > 0 such that there
holds ∥f(x)∥ ⩽ Cg(2x) for 0 < x < δ, where C depends on the norm on Cn only.

Proof. We interpretCn asR2n and denote by fj , j = 1, . . . , 2n, the components of f . Since fj is analytical then there
exists δj such that f ′j(x) ̸= 0 for x ∈ (0, δj). Put δ = min{min{δj}, 1}/2. Then fj is monotone on (0, δ), fj(0) = 0
and so for any k ∈ N we have

|fj(x)| ⩽
∣∣fj(2−k)

∣∣ ⩽ cg(2−k) ⩽ cg(2x), x ∈ (2−k−1, 2−k] ∩ (0, δ).

The inequality for ∥f(x)∥ easily follows.

Corollary 6.21. Let Πh be a local mapping with kernel µ ∈ (W q
2 (G))

∗ (or (Cq(G))∗). If for each α ∈ A and for
each h there holds ∥ϵh(eiα·r,Πh)∥ ⩽ c(α)hPA , then there holds

∥ϵh(v0,Πh)∥ ⩽ C1∥∇PA+1v0∥hPA + C2∥∇max{PA,q}+1v0∥∗ hmax{PA,q} (6.31)

with some C1, C2 > 0, where ∥ · ∥∗ ≡ ∥ · ∥ if µ ∈ (W q
2 (G))

∗ and ∥ · ∥∗ ≡ ∥ · ∥∞ otherwise.
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Proof. Let e ∈ Ω̊, then there exists λ > 0 such that λe ∈ A. Let h be such that 1/h ∈ N. Then we get

∥ϵ̂(λhe,Πh)∥ ⩽ h∥Z−1∥ ∥ϵh(eiλe·r,Πh)∥ ⩽ c(e)∥Z−1∥hPA+1.

Here the first inequality is by Lemma 6.10 and the second one is by assumption. For ϕ = λhe, where 1/h ∈ N, we
have

∥ϵ̂(ϕ,Πh)∥ ⩽ c(e)

|λe|PA+1
|ϕ|PA+1 := ĉ(e)|ϕ|PA+1.

Since ϵ̂ is holomorphic with respect to the first argument by Lemma 6.20 there holds ∥ϵ̂(ϕ,Πh)∥ ⩽ Cĉ(e)|2ϕ|PA+1445

for each ϕ aligned with e in a neighborhood of zero. By Lemma 5.3 there holds ∥ϵ̂(ϕ,Πh)∥ ⩽ c̃|ϕ|PA+1 in a
neighborhood of ϕ = 0. It remains to apply Theorem 6.15.

Proposition 6.22. Consider a scheme of the form (2.8), a local mapping Πh with the kernel µξ ∈ (W q
2 (G))

∗, and
e ∈ Ω̊. Let 0 < P ⩽ Q < ∞ and R = max{Q + 1, q}. The scheme possesses the formal order of accuracy P
and the long­time simulation orderQ onHR

per,e(Rd) iff it possesses the formal order of accuracy P and the long­time450

simulation order Q on HR
per,e(Rd) in the weak sense.

Proof. Let the scheme possess the formal order of accuracy P and the long­time simulation order Q on HQ
per,e(Rd)

in the weak sense. Since e ∈ Ω̊, there exists λ > 0 such that λe ∈ A. For v0 = eiλe·r Definition 3 gives

∥εh(t, eiλe·r,Πh)∥ ⩽ c1h
P + c2th

Q.

Here c1 and c2 may depend on e but are independent of t and h. By Lemma 6.10 there holds

∥ε̂(λhe, t/h,Πh)∥ = ∥εh(t, eiλe·r,Πh)∥ ⩽ c1h
P + c2th

Q.

For ϕ = λhe, where 1/h ∈ N, and each ν ⩾ 0 we have

∥ε̂(ϕ, ν,Πh)∥ ⩽ |ϕ|P c1
|λe|P

+ ν|ϕ|Q+1 c2
|λe|Q+1

.

Since ε̂ is holomorphic with respect to the first argument by Lemma 6.20 there holds ∥ε̂(ϕ, ν,Πh)∥ ⩽ c̃1|ϕ|P +
c̃2ν|ϕ|Q+1 for each ϕ aligned with e in a neighborhood of zero. By Theorem 6.17 the scheme possesses the formal
order of accuracy P and the long­time simulation order Q on HQ

per,e(Rd). The reverse implication is obvious.

In particular, in the 1D case for local mappings Definition 3 is equivalent to Definition 4.455

7. The 1D case

In this section we consider the one­dimensional case. The main result of this section (Theorem 7.7) can be obtained
from the quasi­one­dimensional case considered in Section 9.3 (see Lemma 9.20). However, the 1D case allows us to
use powerful analytical tools that provide a clearer understanding of the enhanced accuracy in the long­time simulation.

Throughout this section we consider a stable scheme of the form (2.8) and a local mapping Πh. In 1D the set of460

the vectors aj contains only one vector a1, which has only one component. We assume it to be unit, i. e. the value h
coincides with the mesh period, which is the natural definition for the schemes with several DOFs per cell. Hence, T
and U are the identity operators on R1.

7.1. Matrix decomposition
Let Rn×n and Cn×n be the spaces of real and complex matrices of size n. Denote by A(C,Rn×n) the set of465

functions A(ϕ) from C to Cn×n such that each element of the matrix A(ϕ) is a holomorphic function at ϕ = 0 and
for all iϕ ∈ R in a neighborhood of ϕ = 0 there holds A(ϕ) ∈ Rn×n.

We need the following result.
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Theorem 7.1 ([29]). Let A ∈ A(C,Rn×n). Suppose there exists K > 0 such that for all ϕ ∈ R and ν ⩾ 0 there
holds ∥ exp(νA(ϕ))∥ ⩽ K. Then in a neighborhood of ϕ = 0 the matrix A(ϕ) can be represented in the form

A(ϕ) = S(ϕ)M(ϕ)S−1(ϕ), (7.1)

M(ϕ) =


M0(ϕ) 0 . . . 0 0

0 ϕM1(ϕ) . . . 0 0
...

...
. . .

...
...

0 0 . . . ϕmMm(ϕ) 0
0 0 . . . 0 M∞(ϕ) ≡ 0

 , (7.2)

where S,M, S−1 ∈ A(C,Rn×n), the square matricesMk(ϕ), k ∈ N∪{0,∞}, are non­degenerate for ϕ = 0 (except
k = ∞), and some of them are absent.470

Throughout this section we denote by S(ϕ),Mj(ϕ), andM(ϕ) the matrices given by Theorem 7.1 for the matrix
A(ϕ) defined in (6.14).

Denote by ℵ̄ the set j ∈ N ∪ {0,∞} such that the block ϕjMj(ϕ) is present in the matrixM(ϕ).
The function v(ϕ,Πh) defined in (6.7) has the form v(ϕ,Πh) = (Π1e

iϕx)0. Let vj(ϕ,Πh), j ∈ ℵ̄, be the compo­
nents of S−1(ϕ)v(ϕ,Πh) corresponding to the blocksMj(ϕ). Since vj(ϕ,Πh) are holomorphic functions there exist
pj ∈ N ∪ {0} and cj ∈ R \ {0} such that in a neighbourhood of ϕ = 0 there holds

cj |ϕ|pj ⩽ ∥vj(ϕ,Πh)∥ ⩽ 2cj |ϕ|pj . (7.3)

If vj(ϕ) ≡ 0 we put by definition pj = ∞ and cj = 1. Put

ℵ = {j ∈ N ∪ {0} : pj <∞} ⊆ ℵ̄.

This means that j ∈ ℵ̄ \ ℵ iff j = ∞ or pj = ∞.
Below we show that the values pj , j ∈ ℵ̄, are responsible for the structure of the numerical error and define the475

order of the truncation error, the order of accuracy, and the long­time simulation order.

Lemma 7.2. There exists j ∈ ℵ̄ such that pj = 0.

Proof. Assume the converse: pj > 0 for each j ∈ ℵ̄. Then for each j there holds vj(0) = 0, therefore (Π11)0 =
v(0,Πh) = 0. On the other hand, by definition for at least one ξ ∈ M0 there holds (Π11)0,ξ = ⟨µξ, 1⟩ ̸= 0. This
contradiction proves the lemma.480

7.2. The structure of the truncation error
Lemma 7.3. Let Πh be a local mapping with µξ ∈ (W q

2 (G))
∗ or (Cq(G))∗. If ℵ = ∅ then the scheme is exact, i. e.

for each v0 ∈ Hq+1
per (R) (or Cq+1

per (R)) there holds ϵh(v0,Πh) = 0.

Proof. Let j ∈ ℵ̄. Since ℵ = ∅, either j = ∞ or pj = ∞. In a neighborhood of ϕ = 0 there holdsMj(ϕ) = 0 in the
first case and vj(ϕ,Πh) = 0 in the second case. Thus for each j ∈ ℵ̄ there holdsMj(ϕ)vj(ϕ,Πh) ≡ 0 and hence

ϵ̂(ϕ,Πh) ≡ A(ϕ)v(ϕ,Πh) ≡ 0. (7.4)

It remains to apply Lemma 6.16.

Lemma 7.4. Let Πh be a local mapping. If ℵ ̸= ∅, then the scheme possesses the truncation error of order

PA = min
j∈ℵ

{pj + j − 1}. (7.5)

This value is optimal, i. e. the scheme does not possess the truncation error of order p > PA.485
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Proof. Since the matrices Z(ϕ), S(ϕ), andMj(ϕ) for each j are holomorphic functions in a neighborhood of ϕ = 0,
for small |ϕ| we have

∥ϵ̂(ϕ,Πh)∥ ⩽ C
∑
j∈ℵ

|ϕ|j∥vj(ϕ,Πh)∥ ⩽ C̃ max
j∈ℵ

|ϕ|j+pj . (7.6)

By Theorem 6.15 the scheme possesses the truncation error of order PA.
Conversely, let the scheme possess the truncation error of order p. Then by (6.17) we have ∥ϵ̂(ϕ,Πh)∥ ⩽ C|ϕ|p+1.

Since S(ϕ) is non­degenerate, for small |ϕ| for each j ∈ ℵ there holds

∥ϕjMj(ϕ)vj(ϕ,Πh)∥ ⩽ c̃|ϕ|p+1.

Since Mj(0) is non­degenerate, we have ∥M−1
j (ϕ)∥ ⩽ 2∥M−1

j (0)∥ in a neighborhood of ϕ = 0. Hence,
∥vj(ϕ,Πh)∥ ⩽ 2c̃∥M−1

j (0)∥ |ϕ|p+1−j . By (7.3) we get pj ⩾ p + 1 − j. Since this holds for each j ∈ ℵ, we
have p ⩽ PA.

7.3. The structure of the solution error490

Now substitute the representation of A(ϕ) given by Theorem 7.1 into (6.16). We have

ε̂(ϕ, ν,Πh) = S(ϕ)
(
eνM(ϕ) − I

)
S−1(ϕ)v(ϕ,Πh) = S(ϕ)


...

Ej(ϕ, ν,Πh)
...

 ,

where
Ej(ϕ, ν,Πh) =

(
eνϕ

jMj(ϕ) − I
)
vj(ϕ,Πh) (7.7)

and vj(ϕ,Πh) is defined in Section 7.1. For j ∈ ℵ̄ \ ℵ in a neighborhood of ϕ = 0 we have Ej(ϕ, ν,Πh) ≡ 0. For
j ∈ ℵ put Y = νϕjMj(ϕ). By the stability condition (6.21) we have ∥eY ∥ ⩽ Kκ(ϕ), where κ(ϕ) is the condition
number of S(ϕ). By Lemma 5.11 from (7.3) we get

∥Ej(ϕ, ν,Πh)∥ ⩽ (Kκ(ϕ) + e)min
{
1, ν|ϕ|j ∥Mj(ϕ)∥

}
2cj |ϕ|pj . (7.8)

Lemma 7.5. Let the scheme possess the formal order of accuracy P and the long­time simulation orderQ ⩾ P . Then
for each j ∈ ℵ there holds

pj ⩾ min{P,Q+ 1− j}. (7.9)

Proof. By Lemma 6.11 in a neighborhood of ϕ = 0 there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ C̃1|ϕ|P + C2ν|ϕ|Q+1.

Since S(0) is non­degenerate, we get the estimate for each error component:

∥Ej(ϕ, ν,Πh)∥ ⩽ C ′
1|ϕ|P + C ′

2ν|ϕ|Q+1 (7.10)

in a neighborhood of ϕ = 0. Particularly, for ν = |ϕ|−j∥Mj(0)∥−1 we get

∥Ej(ϕ, |ϕ|−j∥Mj(0)∥−1,Πh)∥ ⩽ C ′|ϕ|min{P,Q+1−j}.

From (7.7) we have

Ej(ϕ, |ϕ|−j∥Mj(0)∥−1,Πh) =

(
exp

(
Mj(ϕ)

∥Mj(0)∥

)
− I

)
vj(ϕ,Πh).

By Lemma 5.13 the matrix exp(Mj(ϕ)/∥Mj(0)∥) − I is non­degenerate for ϕ = 0. Then it is non­degenerate in a
neighborhood of ϕ = 0 and

∥vj(ϕ,Πh)∥ ⩽
∥∥∥(exp(Mj(ϕ)/∥Mj(0)∥)− I)

−1
∥∥∥ ∥Ej(ϕ, |ϕ|−j∥Mj(0)∥−1,Πh)∥ ⩽ C ′′|ϕ|min{P,Q+1−j}.

Now (7.9) is by the definition of pj .
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Lemma 7.6. If p0 = 0 or p1 = 0, then the scheme does not possess any order of accuracy. Otherwise the scheme
possesses the formal order of accuracy P and the long­time simulation order Q where

P = min
j∈ℵ

(max{pj + j − 1, pj}) = min{p0,min
j⩾1

(pj + j − 1)}, (7.11)

Q = min
j∈ℵ: pj<P

(pj + j − 1). (7.12)

Minimum over the empty set is assumed to be +∞. The values P and Q given by (7.11) and (7.12) are optimal in the
sense of Definition 5.

Proof. First consider the case when p0 = 0 or p1 = 0. Assume that the scheme possess the formal order of accuracy P
and the long­time simulation order Q ⩾ P . Then by Lemma 7.5 there holds p0 ⩾ min{P,Q+ 1}, p1 ⩾ min{P,Q}.495

Since Q ⩾ P , each of the assumptions p0 = 0 or p1 = 0 immediately gives P ⩽ 0.
Now assume p0 ̸= 0, p1 ̸= 0. This yields P ̸= 0. Let us show that Q ⩾ P . By (7.11) there holds p0 ⩾ P . Thus

Q = min
j:pj<P

(pj + j − 1) = min
j⩾1:pj<P

(pj + j − 1) ⩾ min
j⩾1

(pj + j − 1) ⩾ P.

Now we prove that the scheme possesses the formal order of accuracy P and the long­time simulation order Q.
Indeed, by (7.8) in a neighborhood of ϕ = 0 there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ Ĉ
∑
j∈ℵ

∥Ej(ϕ, ν,Πh)∥ ⩽ C
∑
j∈ℵ

min{|ϕ|pj , ν|ϕ|pj+j}. (7.13)

Therefore,
∥ε̂(ϕ, ν,Πh)∥ ⩽ C

∑
j:pj<P

ν|ϕ|pj+j + C
∑

j:pj⩾P

|ϕ|pj ⩽ C ′ν|ϕ|Q+1 + C ′|ϕ|P . (7.14)

By Theorem 6.17 we get the desired estimate (2.17).
Now we show that P and Q are optimal. Let estimate (2.17) be valid under the substitutions Q′ for Q and P ′ for

P where Q′ ⩾ P ′ > 0. Then for each error component given by (7.7) there holds (7.10) with the same substitution.
By Lemma 7.5 for each j there holds one of the inequalities[

pj ⩾ P ′,
pj + j − 1 ⩾ Q′.

(7.15)

Since Q′ ⩾ P ′, (7.15) for each j yields P ′ ⩽ max{pj , pj + j − 1}. Taking minimum over j, using (7.11) we get
P ′ ⩽ P .

Now assume that P ′ = P . Then (7.15) yields

Q′ ⩽ min
pj<P ′

(pj + j − 1) = min
pj<P

(pj + j − 1) = Q.

Thus estimate (2.17) under the substitutions Q′ for Q and P ′ for P yields the alternative[
P ′ < P,
P ′ = P, Q′ ⩽ Q.

This means that P and Q are optimal in the sense of Definition 5.500

7.4. The main result
Theorem 7.7. LetΠh and Ph be local mappings with the kernels µξ, µ̂ξ, correspondingly, where ⟨µ̂ξ, 1⟩ ̸= 0 for each
ξ ∈ M0. Suppose the scheme possesses the formal order of accuracy P ∈ N and long­time simulation order Q ∈ N
in the sense of Πh. Then there exist diagonal matrices C(m) ∈ RM0 ,m = P, . . . , Q, such that the scheme possesses
the truncation error of order Q in the sense of Π(P,Q)

h given by (2.12).505
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Proof. By Lemma 6.11 there exist C1, C2 ⩾ 0 such that in a neighborhood of ϕ = 0 there holds

∥ε̂(ϕ, ν,Πh)∥ =
∥∥∥(eνA(ϕ) − I

)
v(ϕ,Πh)

∥∥∥ ⩽ C1|ϕ|P + C2ν|ϕ|Q+1.

Using representation (7.1), (7.2) provided by Theorem 7.1, in a neighborhood ofϕ = 0 define the holomorphic function

w(ϕ) = S(ϕ)


δ0I 0 . . . 0 0
0 δ1I . . . 0 0
...

...
. . .

...
...

0 0 . . . δmI 0
0 0 . . . 0 δ∞I

S−1(ϕ)v(ϕ,Πh),

where the blocks correspond to the blocks ofM(ϕ), δj = 0 if pj ⩾ P and δj = 1 if pj < P . Since S(ϕ), S−1(ϕ),
and v(ϕ,Πh) are real­valued for iϕ ∈ R, so is w(ϕ). Then w(−ϕ) = w(ϕ). By construction w(ϕ) satisfies

∥w(ϕ)− v(ϕ,Πh)∥ = O(|ϕ|P ).

Since

A(ϕ)w(ϕ) = S(ϕ)


δ0M0(ϕ) 0 . . . 0 0

0 δ1ϕM1(ϕ) . . . 0 0
...

...
. . .

...
...

0 0 . . . δmϕ
mMm(ϕ) 0

0 0 . . . 0 0

S−1(ϕ)v(ϕ,Πh),

by Lemma 7.5 in a neighborhood of ϕ = 0 there holds

∥A(ϕ)w(ϕ)∥ ⩽ C̃ max
j:pj<P

|ϕ|j∥Mj(ϕ)∥ ∥vj(ϕ,Πh)∥ = O(|ϕ|Q+1). (7.16)

By Lemma 6.7 there exist real­valued diagonal matrices C(m), m = P, . . . , Q, such that v(ϕ,Π(P,Q)
h ) = w(ϕ) +

O(|ϕ|Q+1). Now (7.16) yields

ϵ̂(ϕ,Π
(P,Q)
h ) = A(ϕ)v(ϕ,Π

(P,Q)
h ) = O(|ϕ|Q+1).

By Theorem 6.15 the scheme possesses the truncation error of order Q in the sense of Π(P,Q)
h .

7.5. Construction of a scheme with specified properties
Proposition 7.8. Consider the transport equation ∂v/∂t+ ω∂v/∂x = 0, ω ̸= 0. Let ℵ̄ be a finite subset of N ∪ {0}.
Then for any set of pj ∈ N ∪ {0,∞}, j ∈ ℵ̄, containing at least one zero there exists a scheme of the form (2.8) and a
local mapping such that the values pj coincide with those defined by (7.3).510

Proof. Let cm,η , m ∈ N, be coefficients of a finite­difference approximation of the first derivative on the uniform
mesh with unit step possessing exactly the orderm− 1, i. e.

iϕ−
∑
η∈Sm

cm,ηe
iϕη = iϕ−

∞∑
r=0

(iϕ)r

r!

∑
η∈Sm

cm,ηη
r = γmϕ

m +O(ϕm+1) (7.17)

where γm ̸= 0, and Sm ⊂ Z is a finite set. Form = 0 put S0 = {0}, c0,0 = signω, so (7.17) also holds. For η ̸∈ Sm

put cm,η = 0.
Now we define a scheme of the form (2.8) and a local mapping. PutM0 = ℵ̄,

S =
⋃
m∈ℵ̄

Sm; Z0 = I; Zη = 0, η ̸= 0; Lη = diag {ωcξ,η, ξ ∈M0};
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(Πhf)η,ξ = hpξ
dpξf

dxpξ
(ηh), pξ <∞; (Πhf)η,ξ = 0, pξ = ∞.

Then (v(ϕ,Πh))ξ = (iϕ)pξ and

A(ϕ) = iωϕ−
∑
η∈S

Lηe
iϕη = diag

{
iωϕ− ω

∑
η∈S

cξ,ηe
iϕη, ξ ∈M0

}
= diag

{
ωγξϕ

ξ +O(ϕξ+1), ξ ∈M0

}
.

Thus we have a representation of the form (7.1)–(7.2), with the blocks j ∈ ℵ̄ of the size 1 and no other blocks, and the
values pj coincide with those defined by (7.3). If the finite­difference schemes with the coefficients cm,η are stable
then the scheme we constructed is also stable.515

7.6. One­dimensional case: summary
Consider a stable scheme of the form (2.8) and a local mappingΠh. In the sense ofΠh, the truncation error and the

solution error have spectral representations (7.6) and (7.13), correspondingly. Then by Lemma 6.10 for v0 = exp(iαx),
α/π ∈ Q, there holds

∥ϵh(v0,Πh)∥ ⩽ C
∑
j∈ℵ

∥∇pj+jv0∥hpj+j−1 ⩽ C ′∥∇PA+1v0∥hPA ,

∥εh(t, v0,Πh)∥ ⩽ C
∑
j∈ℵ

min
{
∥∇pjv0∥hpj , ∥∇pj+jv0∥hpj+j−1t

}
⩽ C ′∥∇P v0∥hP + C ′∥∇Q+1v0∥hQt, (7.18)

where ℵ and pj are defined in Section 7.1 and PA, P , and Q are given by (7.5), (7.11), and (7.12):

PA = min
j∈ℵ

{pj + j − 1}, P = min{p0,min
j⩾1

(pj + j − 1)}, Q = min
j∈ℵ: pj<P

(pj + j − 1).

Theorem 7.7 states that there exists Π(P,Q)
h in the sense of which the truncation error satisfies

∥ϵh(v0,Π(P,Q)
h )∥ ⩽ C̃∥∇Q+1v0∥hQ.

By the Lax – Ryabenkii theorem (Theorem 4.1) the solution error satisfies

∥εh(t, v0,Π(P,Q)
h )∥ ⩽ C̃K∥Z−1∥ ∥∇Q+1v0∥hQt.

Theorems 6.15 and 6.17 allow to extend these estimates to v0 smooth enough.

Example. Put ℵ̄ = {3, 5}, p3 = 1, and p5 = 0. A scheme with these parameters exists by Proposition 7.8. By
Lemma 7.4 this scheme possesses the truncation error of order PA = 3. For v0 = exp(iαx), α/π ∈ Q, the error
estimate (7.18) reads as

∥εh(t, v0,Πh)∥ ⩽ C1min{h∥∇v0∥, h3t∥∇4v0∥}+ C2min{∥v0∥, h4t∥∇5v0∥}.

By Lemma 7.6 the scheme possesses the formal order of accuracy P = 3 and the long­time simulation order Q = 3,
these values being optimal in the sense of Definition 5. However we can write the estimate

∥εh(t, v0,Πh)∥ ⩽ C1h∥∇v0∥+ C2h
4t∥∇5v0∥,

so the scheme possesses the 1st formal order of accuracy and the 4th order in the long­time simulation. The values
P = 1 and Q = 4 are not optimal in the sense of our definition. Note that due to Theorem 7.7 there exists a local520

mapping that differs from Πh byO(h) and gives the 4th order of the truncation error, the 4th formal order of accuracy
and the 4th long­time simulation order.

8. The general case

In this section we prove Theorem 2 and state some of its corollaries.
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8.1. The method of auxilliary mapping525

The following lemma describes the method of auxiliary mapping (see Proposition 4.2) using the spectral represen­
tation of a scheme.

Lemma 8.1. Consider a scheme of the form (2.8) stable with a constant K and a bounded homogeneous mapping
Πh of Hq

per(Rd) to Vper or a local mapping Πh with µξ ∈ (C⌈q⌉(G))∗. Suppose there exists a function w(ϕ) and
c1, c2 > 0 such that in a neighborhood of ϕ = 0 there holds

∥v(ϕ,Πh)− w(ϕ)∥ ⩽ c1|ϕ|P , ∥A(ϕ)w(ϕ)∥ ⩽ c2|ϕ|Q+1, (8.1)

where 0 < P ⩽ Q ⩽ ∞ (we assume |ϕ|∞ ≡ 0). Let r ⩾ max{Q + 1, q} (if P ⩽ Q < ∞) or r ⩾ max{P, q}, (if
P < Q = ∞) or r ⩾ q (if P = Q = ∞). Then for ε̂(ϕ, ν,Πh) defined by (6.16) there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ (K + 1)c1|ϕ|P + νKc2|ϕ|Q+1 (8.2)

and the scheme possesses the error estimate (2.17) on Hr
per(Rd) (or C

⌈r⌉
per(Rd)) with the same P and Q,

C1 = (K + 1)c1, C2 = Kc2, and C3 > 0 depending only on Πh, r, T,K, the neighborhood of ϕ = 0 in the con­
ditions of the lemma, and the norm on CM0 .530

Proof. We have

∥ε̂(ϕ, ν,Πh)∥ =
∥∥∥(eνA(ϕ) − I

)
v(ϕ,Πh)

∥∥∥ ⩽
∥∥∥(eνA(ϕ) − I

)
(w(ϕ)− v(ϕ,Πh))

∥∥∥+ ∥∥∥(eνA(ϕ) − I
)
w(ϕ)

∥∥∥ ⩽

⩽ ∥exp(νA(ϕ))− I∥ ∥w(ϕ)− v(ϕ,Πh)∥+

∥∥∥∥∥∥
ν∫

0

eτA(ϕ)dτ A(ϕ)w(ϕ)

∥∥∥∥∥∥ ⩽

⩽ (∥exp(νA(ϕ))∥+ 1) ∥w(ϕ)− v(ϕ,Πh)∥+
ν∫

0

∥∥∥eτA(ϕ)
∥∥∥ dτ ∥A(ϕ)w(ϕ)∥ ⩽ (K + 1)c1|ϕ|P + νKc2|ϕ|Q+1.

Thus we get (8.2). It remains to use Theorem 6.17.

8.2. The existence of an auxiliary mapping
Let Cn×n be the space of complex matrices of size n. We need the following result.

Theorem 8.2 ([28]). Let A ∈ Cn×n and v ∈ Cn. Suppose for each ν ⩾ 0 there hold ∥eνA∥ ⩽ K and

∥(eνA − I)v∥ ⩽ (C̃1 + C̃2ν)∥v∥. (8.3)

Then for w = (A∗A+ε2)−1ε2v where ε = C̃2/C̃1 (if C̃1 = 0 or C̃2 = 0 then the vector w is the corresponding limit)
there hold

∥v − w∥ ⩽ δC̃1∥v∥, ∥Aw∥ ⩽ δC̃2∥v∥, (8.4)

where δ depends on n andK only.

Note that w = argmin(C̃2
2∥v − w∥2 + C̃2

1∥Aw∥2).535

Denote
WP,Q(ϕ) =

(
A∗(ϕ)A(ϕ) + |ϕ|2(Q+1−P )

)−1

|ϕ|2(Q+1−P )v(ϕ,Πh), (8.5)

where v(ϕ,Πh) and A(ϕ) are defined by (6.7) and (6.14).

Corollary 8.3. Let the scheme (2.8) be stable, Πh be a local mapping, and (2.17) hold. In a neighborhood of ϕ = 0
there holds

∥v(ϕ,Πh)−WP,Q(ϕ)∥ ⩽ δC1|ϕ|P , ∥A(ϕ)WP,Q(ϕ)∥ ⩽ δC2|ϕ|Q+1, (8.6)

where δ depends only onM0, ∥Πh1∥, and the stability constant.
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Proof. We have
∥v(ϕ,Πh)∥ = ∥(Π1 exp(iϕ · r))0∥ → ∥Πh1∥ as ϕ→ 0.

From (2.17) by Lemma 6.11 in a neighborhood of ϕ = 0 there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ 3

2
C1|ϕ|P + νC2|ϕ|Q+1.

By (6.16) in a neighborhood of ϕ = 0 there holds

∥(eνA(ϕ) − I)v(ϕ,Πh)∥ ⩽ (2C1|ϕ|P ∥Πh1∥−1 + 2C2|ϕ|Q+1∥Πh1∥−1ν)∥v(ϕ,Πh)∥.

It remains to use Theorem 8.2.

Now we are ready to prove Theorem 2, which we repeat here.

Theorem 2. Let Πh be a local mapping with µξ ∈ (W q
2 (G))

∗ or (Cq(G))∗. Let P,Q > 0, r ⩾ max{P, q}, and
R ⩾ max{Q+ 1, r}. Let the scheme (2.8) be stable and possess the error estimate (2.17) onHR

per(Rd) (orC⌈R⌉
per (Rd)).

Then there exists a homogeneous mapping Π̃h : L2,per(Rd) → Vper such that

∥Π̃hf −Πhf∥ ⩽ C(hP ∥∇P f∥+ hr∥∇rf∥∗), ∥ϵh(f, Π̃h)∥ ⩽ ChQ∥∇Q+1f∥ (8.7)

for each h and f ∈ HR
per(Rd) (or C⌈R⌉

per (Rd)), where C does not depend on h and f , and ∥ · ∥∗ means either ∥ · ∥540

or ∥ · ∥∞ depending on the case.

Proof. First we consider the case µξ ∈ (W q
2 (G))

∗. Recall the notation Aβ = {α ∈ A : T ∗α ∈ [−β, β)d} for
β > 0. By Corollary 8.3 there exists β > 0 such that (8.6) holds for ϕ ∈ Aβ . Since v(−ϕ,Πh) = v(ϕ,Πh) and
A(−ϕ) = A(ϕ), by construction we have WP,Q(−ϕ) = WP,Q(ϕ). Using the continuity of v(ϕ,Πh) and the first
inequality in (8.6) we get

sup
ϕ∈Aβ

∥WP,Q(ϕ)∥ ⩽ sup
ϕ∈Aβ

∥v(ϕ,Πh)∥

By Lemma 6.6 withG = Aβ there exists a bounded homogeneous mapping Π̃h such thatWP,Q(ϕ) = v(ϕ, Π̃h). Let
Fh = Π̃h −Πh. For α ∈ Aβ/h using the first inequality in (8.6) we obtain

∥Fhe
iα·r∥ = ∥(Fhe

iα·r)0∥ = ∥(Π̃he
iα·r)0 − (Πhe

iα·r)0∥ = ∥WP,Q(αh)− v(αh,Πh)∥ ⩽ δC1h
P |α|P . (8.8)

Applying Lemma 6.14 we obtain the first inequality in (8.7). The second inequality in (8.6) yields the second inequality
in (8.7) by Theorem 6.15.

Now consider the case µξ ∈ (Cq(G))∗. By Lemma 5.9 there exists a local mapping Π̂h with the kernel
µ̂ξ ∈ L2(G+B1(0)) such that

∥Πhf − Π̂hf∥ ⩽ Chr∥∇rf∥∞.

By the above proof we have (8.7) with the substitution of Π̂h for Πh, and it remains to use the triangle inequality.

8.3. An analytical criterion545

For a given scheme (2.8), a mapping Πh, and two numbers 0 < P ⩽ Q <∞ denote

FP,Q(ϕ) = |ϕ|−2P v∗(ϕ,Πh)
(
A∗(ϕ)A(ϕ) + |ϕ|2(Q+1−P )

)−1

A∗(ϕ)A(ϕ)v(ϕ,Πh). (8.9)

Lemma 8.4. For WP,Q given by (8.5) there holds

FP,Q(ϕ) = |ϕ|−2P ∥v(ϕ,Πh)−WP,Q(ϕ)∥2 + |ϕ|−2(Q+1)∥A(ϕ)WP,Q(ϕ)∥2. (8.10)
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Proof. We have
|ϕ|−2(Q+1−P )A∗(ϕ)A(ϕ)WP,Q(ϕ) = v(ϕ,Πh)−WP,Q(ϕ).

Thus

|ϕ|−2(Q+1−P )∥A(ϕ)WP,Q(ϕ)∥2 =

= |ϕ|−2(Q+1−P )(A∗(ϕ)A(ϕ)WP,Q(ϕ),WP,Q(ϕ)) = (v(ϕ,Πh)−WP,Q(ϕ),WP,Q(ϕ)).

On the other hand,

|ϕ|2PFP,Q(ϕ) = (|ϕ|−2(Q+1−P )A∗(ϕ)A(ϕ)WP,Q(ϕ), v(ϕ,Πh)) = (v(ϕ,Πh)−WP,Q(ϕ), v(ϕ,Πh)).

Now (8.10) is obvious.

The following theorem establishes an analytical criterion which allows us (at least in theory) to find the optimal
values of the formal order of accuracy and the long­time simulation order.

Theorem 8.5. Let the scheme (2.8) be stable, Πh be a local mapping with kernel µξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗),
0 < P ⩽ Q < ∞, R ⩾ max{Q, q + 1}. The scheme possesses the formal order of accuracy P and the long­time550

simulation order Q on HR
per(Rd) (or C⌈R⌉

per (Rd)) if and only if FP,Q(ϕ) is bounded in a neighborhood of ϕ = 0.

Proof. Assume the error estimate (2.17). Then in an neighborhood of ϕ = 0 we have (8.6) and thus by (8.10) there
holds

FP,Q(ϕ) ⩽ |ϕ|−2P
(
δ2C2

1 |ϕ|2P
)
+ |ϕ|−2(Q+1)

(
δ2C2

2 |ϕ|2(Q+1)
)
= δ2(C2

1 + C2
2 ).

On the other hand, assuming that F(ϕ) ⩽ C2 from (8.10) we get

∥v(ϕ,Πh)−WP,Q(ϕ)∥ ⩽ C|ϕ|P , ∥A(ϕ)WP,Q(ϕ)∥ ⩽ C|ϕ|Q+1.

By Lemma 8.1 the scheme possesses error estimate (2.17) on HR
per(Rd) (or C⌈R⌉

per (Rd)).

Lemma 8.6. Let the scheme (2.8) be stable, Πh be a local mapping with kernel µξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗),
0 < P ⩽ Q < ∞, R ⩾ max{Q, q + 1}. Let ẽ ∈ Ω̊. The scheme possesses the formal order of accuracy P and the
long­time simulation order Q onHR

per,ẽ(Rd) (or CR
per,ẽ(Rd)) if and only if FP,Q(ẽψ) is bounded as ψ tends to zero.555

The proof is similar to Theorem 8.5.

Proposition 8.7. Let Πh and Ph be local mappings with kernels µξ, µ̂ξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗), and ⟨µ̂ξ, 1⟩ ̸= 0

for each ξ ∈M0. Let e ∈ Ω̊. Suppose a stable scheme of the form (2.8) possesses the formal order of accuracy P and
the long­time simulation orderQ <∞ in the sense ofΠh onHR

per,e(Rd) (orC⌈R⌉
per,e(Rd)), whereR = max{Q+ 1, q}.

Then there exist real­valued diagonal matrices C(m)
e ,m = ⌈P ⌉, . . . , ⌈Q⌉, such that the scheme possesses the trunca­560

tion error of order ⌈Q⌉ in the sense ofΠ(⌈P⌉,⌈Q⌉)
h,e given by (2.12) on the direction e. As a corollary, the optimal values

of the order of accuracy and of the long­time simulation order onHR
per,e(Rd) (or C⌈R⌉

per,e(Rd)) are integers.

Proof. Let WP,Q(ϕ) be given by (8.5) and W (ψ) = WP,Q(eψ). By Lemma 8.6 the function FP,Q(eψ), where
FP,Q is defined by (8.9), is bounded as ψ → 0. Using (8.10) for ϕ = eψ we have

∥v(ψe,Πh)−W (ψ)∥ = O(|ψ|P ), ∥A(ψe)W (ψ)∥ = O(|ψ|Q+1). (8.11)

By construction each component of W (ψ) is a ratio of two analytical functions of the real argument ψ; by (8.11) it
is bounded as ψ → 0, thus W (ψ) is an analytical function. Thus both expressions under norm signs in (8.11) are
analytical at ψ = 0 and so P and Q can be replaced by ⌈P ⌉ and ⌈Q⌉, correspondingly. By Lemma 6.8 there exist

37



real­valued diagonal matrices C(m)
e , m = ⌈P ⌉, . . . , ⌈Q⌉, such that for the mapping Π

(⌈P⌉,⌈Q⌉)
h,e given by (2.13) there

holds
v(ψe,Π

(⌈P⌉,⌈Q⌉)
h,e ) =W (ψ) +O(|ψ|⌈Q⌉+1),

thus by the triangle inequality we have

∥ϵ̂(ψe,Π(⌈P⌉,⌈Q⌉)
h,e )∥ = ∥A(ψe)v(ψe,Π(⌈P⌉,⌈Q⌉)

h,e )∥ = O(|ψ|⌈Q⌉+1).

It remains to use Theorem 6.15.

Given a scheme with enhanced accuracy in the long­time simulation, Theorem 2 states that there exists an auxiliary
mapping Π̃h explaining this fact. This mapping is generally not of the form (2.11). For the 1D case, Proposition 8.7565

states the existence of an auxiliary mapping of the form (2.11). Hovewer, in the multidimensional case, an auxiliary
mapping of the form (2.11) generally does not exist, see a counter­example in Section 12.3.

9. The good

Throughout this section we consider a stable scheme of the form (2.8) with stability constant K and a local map­
ping Πh. In this section we will prove Theorem 1 and Theorem 3, which is splitted into Theorems 3A and 3B.570

9.1. The order of accuracy
In this subsection we establish the optimal value of the formal order of accuracy.

Lemma 9.1. Let the matrix A(ϕ) be given by (6.14). Then the eigenvalue λ = 0 of A(0) is semisimple, i. e. there
are no Jordan cells of size greater than one corresponding to λ = 0.

Proof. Assume the converse. Represent the matrix A(0) in the form A(0) = SJS−1 where J is its Jordan normal575

form. Then eνA(0) = SeνJS−1. The explicit expression for eνJ shows that ∥eνJ∥ grows unlimitedly as ν → ∞ and
so does ∥eνA(0)∥. This contradicts the stability condition (6.21).

Consider ε̂(ϕ, ν,Πh) given by (6.16). By Theorem 5.19 in a neighborhood of ϕ = 0 there holds A(ϕ) =
S(ϕ)M(ϕ)S−1(ϕ) where M(ϕ) has the form (5.10). Let vj(ϕ,Πh) be the components of S−1(ϕ)v(ϕ,Πh) cor­
responding to the blocksM (j)(ϕ). Denote

Ej(ϕ, ν,Πh) =
(
eνM

(j)(ϕ) − I
)
vj(ϕ,Πh), (9.1)

then

ε̂(ϕ, ν,Πh) = S(ϕ)(eM(ϕ)ν − I)S−1(ϕ)v(ϕ,Πh) = S(ϕ)


...

Ej(ϕ, ν,Πh)
...

 . (9.2)

Note that the notation is similar to the 1D case but the decomposition is different. Wewill also use the notationM (∗)(ϕ)
for the submatrix ofM(ϕ) containing the blocksM (j)(ϕ), j ̸= 0, and the notation v∗(ϕ,Πh), E∗(ϕ, ν,Πh) for the
unions of all blocks excluding j = 0 of the corresponding vectors. Below we assume that the norms of subvectors are580

inherited from CM0

, i. e., for example, ∥vj∥ = ∥(0, . . . , 0, vj , 0, . . . , 0)T ∥.
SinceM (0)(0) = 0, there holdsM (0)(ϕ) =

∑d
k=1M

(0)
k (ϕ)ϕk whereM

(0)
k (ϕ) are holomorphic. Thus

M (0)(αh)
t

h
=

d∑
k=1

M
(0)
k (αh)αkt

is a holomorphic function of t, h, and α. Particularly, if A(0) = 0 then ε̂(αh, t/h,Πh) is a holomorphic function of
t, h, and α for each t in a neighborhood of h = 0 and α = 0.
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Lemma 9.2. Suppose the scheme (2.8) possesses the estimate (2.17) in the sense of a local mapping Πh. Then in a
neighborhood of ϕ = 0 for each ν ⩾ 0 there holds

∥v∗(ϕ,Πh)∥ ⩽ δ̃C1|ϕ|⌈P⌉, ∥E∗(ϕ, ν,Πh)∥ ⩽ (K + 1)δ̃C1|ϕ|⌈P⌉. (9.3)

Moreover, if P is integer, then δ̃ depends only on |M0|,K, and the norm on CM0 .

Proof. By Lemma 6.11 in a neighborhood of ϕ = 0 there holds

∥ε̂(ϕ, ν,Πh)∥ ⩽ 2C1|ϕ|P + C2ν|ϕ|Q+1.

Thus for each j we have

∥Ej(ϕ, ν,Πh)∥ ⩽ cn∥S−1(ϕ)∥
(
2C1|ϕ|P + C2ν|ϕ|Q+1

)
,

where cn depends on the norms in use. Directly from (9.1) for each j ̸= 0 and each ν ⩾ 0 we get

∥vj(ϕ,Πh)∥ ⩽
∥∥∥∥[exp(M (j)(ϕ)ν

)
− I
]−1
∥∥∥∥ ∥Ej(ϕ, ν,Πh)∥.

Put ν = 1/(2∥M (j)(0)∥). Then by Lemma 5.13 in a neighborhood of ϕ = 0 we have

∥vj(ϕ,Πh)∥ ⩽ 4

∥∥∥∥∥
(

M (j)(ϕ)

2∥M (j)(0)∥

)−1
∥∥∥∥∥ ∥Ej(ϕ, ν,Πh)∥ ⩽ 10κ(M (j)(0))

∥∥∥∥Ej

(
ϕ,

1

2∥M (j)(0)∥
,Πh

)∥∥∥∥ ⩽

⩽ 20cnδ
2

(
2C1 |ϕ|P + C2

1

2∥M (j)(0)∥
|ϕ|Q+1

)
⩽ 100δ2cnC1 |ϕ|P .

Since vj(ϕ,Πh) is holomorphic then the degree P in the right­hand side can be improved to ⌈P ⌉. This leads to the585

first inequality in (9.3). The second inequality follows from the first by stability.

Lemma 9.3. Let the scheme (2.8) possess the estimate (2.17) in the sense of a local mapping Πh. Then in a neigh­
borhood of ϕ = 0 there holds

∥M (0)(ϕ)v0(ϕ,Πh)∥ ⩽ C|ϕ|⌈P⌉+1. (9.4)

Proof. Similar to the previous lemma, we have

∥E0(ϕ, ν,Πh)∥ ⩽ cn∥S−1(ϕ)∥
(
2C1|ϕ|P + C2ν|ϕ|Q+1

)
. (9.5)

Using the function f given by (5.7) (f(x) = (ex − 1)/x), formula (9.1) is equivalent to

E0(ϕ, ν,Πh) = f
(
M (0)(ϕ)ν

)
M (0)(ϕ) ν v0(ϕ,Πh).

AssumingM (0)(ϕ) ̸= 0 put ν = 1/∥M (0)(ϕ)∥. By Lemma 5.12 we get ∥(f(νM (0)(ϕ)))−1∥ ⩽ 4, thus∥∥∥M (0)(ϕ)v0(ϕ,Πh)
∥∥∥ ⩽ 4

ν
∥E0(ϕ, ν,Πh)∥ ⩽ C ′

1|ϕ|P ∥M (0)(ϕ)∥+ C ′
2|ϕ|Q+1.

If M (0)(ϕ) = 0 then M (0)(ϕ)v0(ϕ,Πh) = 0. Since M (0)(ϕ) = O(|ϕ|) as ϕ → 0 and Q ⩾ P we get
∥M (0)(ϕ)v0(ϕ,Πh)∥ = O(|ϕ|P+1) as ϕ → 0. Taking into account thatM (0)(ϕ) and v0(ϕ,Πh) are holomorphic,
we arrive at (9.4).

Now we are ready to prove Theorem 1, which we repeat here. Recall that for n ∈ N by Ω̊n we denote a set of590

vectors {ek ∈ Ω̊, k = 1, . . . , Cd−1
n+d−1} such that {(ek · r)n} form a basis in the set of homogeneous polynomials of

order n (see Lemma A.6).
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Theorem 1. Consider a scheme of the form (2.8), stable with a constant K, and local mappings Πh, Ph with ker­
nels µξ, µ̂ξ ∈ (W q

2 (G))
∗ (or (Cq(G))∗). Let PA and P be the optimal orders of the truncation error and accuracy,

correspondingly, in the sense of Πh. Let κ̂ = minξ∈M0 |⟨µ̂ξ, 1⟩| > 0 and R = max{q, P} + 1. Then the following595

holds.

1. PA and P are integers.
2. Either P = PA or P = PA + 1.
3. If P = PA + 1 then there exist real­valued diagonal matrices C(m), |m| = P , such that the scheme possesses

the truncation error of order P in the sense of Π(P,P )
h given by (2.12). Moreover, ∥C(m)∥ ⩽ δ̃C1, where C1 is600

the constant in estimate (2.17) and δ̃ depends only onK, κ̂, P , |M0|, and the norm on CM0 .
4. If P = PA then there exists no set of matrices {C(m), |m| = PA + 1}, such that the scheme possesses the

truncation error of order PA + 1 in the sense of Π(PA+1,PA+1)
h given by (2.12).

5. If L(0) = 0 then P = PA.
6. If the scheme possesses the formal order of accuracyPA+1 onHR

per,e(Rd) (orCR
per,e(Rd)) for each e ∈ Ω̊PA+1,605

then it possesses the formal order of accuracy P = PA + 1 on HR
per(Rd) (or CR

per(Rd)).
7. P coincides with the optimal order of accuracy in the weak sense.

Proof. 1. Let the scheme possess the order of the truncation error PA. Then by Corollary 6.21 there holds (6.31).
Taking v0 = exp(iα · r), by Lemma 6.10 in a neighborhood of ϕ = 0 we get ∥ϵ̂(ϕ,Πh)∥ ⩽ c|ϕ|PA+1. Since
ϵ̂(ϕ,Πh) is a holomorphic function, then we have ∥ϵ̂(ϕ,Πh)∥ ⩽ c̃|ϕ|⌈PA⌉+1. By Theorem 6.15 the scheme possesses610

the truncation error of order ⌈PA⌉. Thus the optimal value of the order of the truncation error is an integer.
Let the scheme possess the order of accuracy p (possibly not optimal). Put by definition

w(ϕ) = S(ϕ)

(
0 0
0 I

)
S−1(ϕ)v(ϕ,Πh), (9.6)

where the identity matrix corresponds to the blockM (0)(ϕ). By Lemma 9.2 we have

∥w(ϕ)− v(ϕ,Πh)∥ =

∥∥∥∥S(ϕ)( v∗(ϕ,Πh)
0

)∥∥∥∥ ⩽ cn∥S(ϕ)∥∥v∗(ϕ,Πh)∥ ⩽ δC1|ϕ|⌈p⌉. (9.7)

If p is integer, δ in (9.7) depends only onK, |M0| and the choice of norms. By Lemma 9.3 there holds

A(ϕ)w(ϕ) = S(ϕ)

(
0

M (0)(ϕ)v0(ϕ,Πh)

)
= O(|ϕ|⌈p⌉+1). (9.8)

By Lemma 8.1 the scheme possesses the formal order of accuracy ⌈p⌉. This proves that the optimal order of accuracy
is an integer.

2. By Lemma 9.2 and Lemma 9.3 there holds

∥ϵ̂(ϕ,Πh)∥ =

∥∥∥∥S(ϕ)( M (∗)(ϕ)v∗(ϕ,Πh)
M (0)(ϕ)v0(ϕ,Πh)

)∥∥∥∥ = O(|ϕ|P ).

By Theorem 6.15 the scheme possesses the order of the truncation error P − 1. Thus P ⩽ PA+1. On the other hand,
by Theorem 4.1 we have P ⩾ PA. Since both P and PA are integers there holds either P = PA or P = PA + 1.615

3. Now assume P = PA + 1. Let w be given by (9.6). Since v(ϕ,Πh) = v(−ϕ,Πh) and A(ϕ) = A(−ϕ), for
W (ϕ) = (w(ϕ) + w(−ϕ))/2 by (9.7) and (9.8) with p = P we have

∥W (ϕ)− v(ϕ,Πh)∥ ⩽ δcnC1|ϕ|P , A(ϕ)W (ϕ) = O(|ϕ|P+1). (9.9)

By Lemma 6.7 there exist C(m), |m| = P , such that for Π(P,P )
h there holds

v(ϕ,Π
(P,P )
h ) =W (ϕ) +O(|ϕ|P+1).
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By the triangle inequality we get

ϵ̂(ϕ,Π
(P,P )
h ) = A(ϕ)v(ϕ,Π

(P,P )
h ) = O(|ϕ|P+1),

so the coefficients C(m) satisfy the statement of the theorem. By construction (see (6.12) and (6.13)),

(C(m))ξ,ξ =
1

i|m|m!
(vξ(0,Ph))

−1
(
Dm (W (ϕ)− v(ϕ,Πh))|ϕ=0

)
ξ
.

Using (9.9) and Lemma 5.2 we get |(C(m))ξ,ξ| ⩽ κ̂−1δcncPC1, where cP depends on P only. From here, the estimate
for ∥C(m)∥ is obvious.

4. Suppose there exists a set of matrices C(m) such that the scheme possesses the truncation error of order PA +1

in the sense of Π(PA+1,PA+1)
h . Then for w(ϕ) = v(ϕ,Π

(PA+1,PA+1)
h ) we have (8.1) with P = Q = PA + 1 and thus

by Lemma 8.1 the scheme possesses the formal order of accuracy PA +1 and the long­time simulation order PA +1.620

5. If L(0) = 0, the block M (∗)(ϕ) does not exist, and by Lemma 9.3 we have ∥ϵ̂(ϕ,Πh)∥ = O(|ϕ|P+1). By
Theorem 6.15 the scheme possesses the order of the truncation error P , i. e. there holds P = PA.

6. Now let the scheme possess the order of accuracy p = PA + 1 on HR
per,e(Rd) for each e ∈ Ω̊p. Arguing as in

the proof of Lemma 6.11 for ϕ ∈ span{e} in a neighborhood of ϕ = 0 we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ c1(e)|ϕ|p + c2(e)ν|ϕ|p+1.

Following proofs of Lemmas 9.2 and 9.3 for ϕ ∈ span{e} in a neighborhood of ϕ = 0 there hold (9.3) and (9.4). By
Lemma 5.3 the inequalities (9.3) and (9.4) hold for eachϕ in a neighborhood ofϕ = 0with another multiplicative con­
stants. Substituting this into (9.1) by stability we get E∗(ϕ, ν,Πh) = O(|ϕ|⌈p⌉) and E0(ϕ, ν,Πh) = O(ν|ϕ|⌈p⌉+1),625

thus ε̂(ϕ, ν,Πh) = O(|ϕ|⌈p⌉ + ν|ϕ|⌈p⌉+1). It remains to apply Theorem 6.17.
7. If the scheme possesses the order of accuracy P in the weak sense on HR

per(Rd), then by Proposition 6.22 for
each e ∈ Ω̊ it possesses the order of accuracy P in the strong sense onHR

per,e(Rd), and it remains to use the previous
statement.

An auxiliary mapping that provides (8.7) can’t be generally found in the form (2.12), see Section 12.2 for the630

example. We just proved that this is possible if Q = P . Now we consider another two cases when this is possible,
namely, the simple case and the quasi­1D case.

9.2. The simple case
Below we assume that the scheme is 0­exact, i. e. the scheme preserves constant solutions, or, that is the same,∑
Lη(Π11)0 = 0. Here the subscript 1 means the substitution 1 for h and the subscript 0 means the substitution 0635

for η. Otherwise the order of accuracy is PA = −1 and by Theorem 1 the numerical solution does not converge to the
exact one.

Since the scheme is 0­exact, then the operatorA(0) has nontrivial kernel: A(0)⃗e = 0, where e⃗ = v(0,Πh). We shall
say that the scheme is simple if the zero eigenvalue of the operatorA(0) is simple or, this is the same, dimKerL(0) = 1.
The scheme is simple iff the vector v0(ϕ,Πh) defined in Section 9.1 is of size 1.640

Proposition 9.4. Suppose a scheme has no steady solutions but the constant. Then it is simple.

Proof. Let E ∈ V 1
per be the constant sequence formed by the element e⃗. By assumption the scheme has no steady

solutions but cE, c ∈ R. So KerL ∩ Vper = span{E}. By (6.14) we have A(0) = −Z−1(0)L(0). Consider a vector
w0 ∈ CM0

such that w0 ̸∈ span{⃗e}. Let w ∈ V 1
per be the constant sequence all elements of which are equal to w0.

Then Lw ̸= 0. By (6.4) all the block components of Lw are equal to L(0)w0, thus we have L(0)w0 ̸= 0. Then645

A(0)w0 = −Z−1(0)L(0)w0 ̸= 0. Hence, w0 = e⃗ is the only (up to a factor) solution of A(0)w0 = 0. Therefore by
Lemma 9.1 we obtain that λ = 0 is a simple eigenvalue of A(0).

The discontinuous Galerkin method with the upwind flux in 1D is a simple scheme unless the transport velocity is
zero. On a multidimensional simplicial translationally­invariant (i. e. invariant with respect to the translation by the
vector of any mesh edge) mesh the DG method with the upwind flux is a simple scheme unless the transport velocity650

ω is parallel to one of the mesh faces.
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Lemma 9.5. Suppose a simple scheme (2.8) possesses the estimate (2.17) in the sense of a local mapping Πh. Then
in a neighborhood of ϕ = 0 there holds

∥M (0)(ϕ)∥ ⩽ C|ϕ|⌈Q⌉+1. (9.10)

Proof. Denote by λ(ϕ) the only element of the matrix M (0)(ϕ). It is a holomorphic function. By Lemma 9.2 in a
neighborhood ofϕ = 0we have ∥v∗(ϕ,Πh)∥ ⩽ C|ϕ|P . Then v0(0,Πh) ̸= 0; assuming the converse, we immediately
get (Π11)0 = v(0,Πh) = 0, which contradicts the definition of the local mapping. Recall that v0(ϕ,Πh) is a 1­
component quantity. Hence for small |ϕ| by (9.5) there holds∣∣∣eνλ(ϕ) − 1

∣∣∣ ⩽ 2cn
|v0(0,Πh)|

(C1|ϕ|P + C2ν|ϕ|Q+1).

Put ν = |ϕ|−⌈Q⌉; then the right­hand side tends to zero as ϕ→ 0. Hence, λ(ϕ)|ϕ|−⌈Q⌉ → 0. Since λ(ϕ) is a
holomorphic function of ϕ at ϕ = 0, then λ(ϕ) = O(|ϕ|⌈Q⌉+1).

Lemma 9.6. Let Πh be a local mapping. Let a simple scheme possess the formal order of accuracy P and the long­
time simulation order Q and, at the same time, the formal order of accuracy P ′ and the long­time simulation order655

Q′. Then it possesses the formal order of accuracy ⌈max{P, P ′}⌉ and the long­time simulation order ⌈max{Q,Q′}⌉.

Proof. By Lemma 9.2 and Lemma 9.5 we have |λ(ϕ)| ⩽ C|ϕ|⌈Q⌉+1 and ∥v∗(ϕ,Πh)∥ ⩽ C|ϕ|⌈P⌉. At the same time,
we have similar inequalities with the substitution P ′ for P andQ′ forQ. Thus we have the same inequalities with the
substitution max{P, P ′} for P and max{Q,Q′} for Q. By direct substitution into (9.2) and (9.1) we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ C|ϕ|⌈max{P,P ′}⌉ + Cν|ϕ|⌈max{Q,Q′}⌉+1.

It remains to apply Theorem 6.17.

Lemma 9.6 shows that the situation mentioned in the comments to Definition 5 and showed in Section 7.6 is not
possible in the simple case.

Lemma 9.7. Consider a simple scheme and a local mapping Πh. Then the optimal value of the long­time simulation660

order is integer.

Proof. This follows from the previous lemma with P = P ′ and Q = Q′.

Lemma 9.8. Consider a simple scheme and a local mapping Πh. Let p ∈ N. If for each q ∈ N the scheme possesses
the formal order of accuracy p and the long­time simulation order q, then it possesses the formal order of accuracy p
and the long­time simulation order∞.665

Proof. By Lemma 9.5 for each s ∈ N we have ∥M (0)(ϕ)∥ ⩽ Cs|ϕ|s+1; since M (0)(ϕ) is holomorphic at ϕ = 0,
we have M (0)(ϕ) = 0 in a neighborhood of zero. Using Lemma 9.2 and representation (9.2), (9.1), we have
∥ε̂(ϕ, ν,Πh)∥ ⩽ c|ϕ|p, where c does not depend on ν. By Theorem 6.17 the scheme possesses the formal order
of accuracy P and the long­time simulation order Q = ∞.

Proposition 9.9. For a stable scheme (2.8) with |M0| = 1 and a local mapping Πh, the optimal values of the order670

of truncation error, the order of accuracy, and the long­time simulation order coincide.

Proof. Let P andQ ⩾ P be the optimal values of the order of accuracy and of the long­time simulation order. Then by
Lemma 9.5 we have ∥M (0)(ϕ)∥ ⩽ C|ϕ|Q+1. SinceM (0) is a 1×1­matrix and there is no block ∥M (∗)(ϕ)∥, we have
∥A(ϕ)∥ = ∥M(ϕ)∥ = ∥M (0)(ϕ)∥ ⩽ C|ϕ|Q+1. By (6.15) this yields ∥ϵ̂(ϕ,Πh)∥ ⩽ C|ϕ|Q+1∥v(0,Πh)∥. Then
Theorem 6.15 states that the scheme possesses the order Q of the truncation error. By stability P ⩾ Q, thus P = Q.675

Clearly, Q is the optimal value of the order of the truncation error, otherwise by stability the scheme possesses the
formal order of accuracy and the order of the long­time simulation greater than Q, which contradicts the assumption.
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Lemma 9.10. Let Πh and Ph be local mappings with kernels µξ, µ̂ξ such that ⟨µ̂ξ, 1⟩ ̸= 0 for each ξ ∈ M0. Let
a simple stable scheme of the form (2.8) possess the formal order of accuracy P ∈ N and the long­time simulation680

order Q in the sense of Πh. Then there exist real­valued diagonal matrices C(m) such that the scheme possesses the
truncation error of order ⌈Q⌉ in the sense of Π(P,⌈Q⌉)

h given by (2.12).

Proof. We repeat a fragment of the proof of Theorem 1, using Lemma 9.5 instead of Lemma 9.3. By Lemma 9.2 and
Lemma 9.5 for

w(ϕ) = S(ϕ)

(
0 0
0 I

)
S−1(ϕ)v(ϕ,Πh).

we have
∥w(ϕ)− v(ϕ,Πh)∥ =

∥∥∥∥S(ϕ)( v∗(ϕ,Πh)
0

)∥∥∥∥ ⩽ cn∥S(ϕ)∥∥v(ϕ,Πh)∥ = O(|ϕ|P ),

A(ϕ)w(ϕ) = S(ϕ)

(
0

M (0)(ϕ)v0(ϕ,Πh)

)
= O(|ϕ|⌈Q⌉+1).

By Lemma 6.7 there exist C(m), P ⩽ |m| ⩽ ⌈Q⌉, such that for Π(P,⌈Q⌉)
h there holds

v(ϕ,Π
(P,⌈Q⌉)
h ) = w(ϕ) +O(|ϕ|⌈Q⌉+1).

By the triangle inequality we get

ϵ̂(ϕ,Π
(P,Q)
h ) = A(ϕ)v(ϕ,Π

(P,Q)
h ) = O(|ϕ|⌈Q⌉+1).

By Theorem 6.15 the scheme possesses the truncation error of order ⌈Q⌉ in the sense of Π(P,Q)
h , so the coefficients

C(m) satisfy the statement of the lemma.

Lemma 9.11. Let the scheme (2.8) be simple, Πh be a local mapping with a kernel µξ ∈ (W r
2 (G))

∗ (or (Cr(G))∗),685

and let p, q > 0. Suppose for each e ∈ Ω̊⌈q⌉ the scheme possesses the formal order of accuracy p and the long­time
simulation order q onHR

per,e(Rd) (or C⌈R⌉
per,e(Rd)), Then the scheme possesses the formal order of accuracy p and the

long­time simulation order q on HR
per(Rd) (or C⌈R⌉

per (Rd)), R = max{r, q + 1}.

Proof. By assumption for each e ∈ Ω̊p and each ϕ aligned with e we have

∥ε̂(ϕ, ν,Πh)∥ ⩽ c1(e)|ϕ|p + c2(e)ν|ϕ|q+1.

Then for ϕ aligned with e there hold (9.3) and (9.10). By Lemma 5.3 the inequalities (9.3) and (9.10) hold for each ϕ
with some other multiplicative constants. Substituting this into (9.1) by stability we getE∗(ϕ, ν,Πh) = O(|ϕ|⌈p⌉) and690

E0(ϕ, ν,Πh) = O(ν|ϕ|⌈q⌉+1), thus ε̂(ϕ, ν,Πh) = O(|ϕ|⌈p⌉ + ν|ϕ|⌈q⌉+1). It remains to apply Theorem 6.17.

Lemma 9.12. Let the scheme be simple. Then the optimal values of the formal order of accuracy and of the long­time
simulation order coincide with the ones in the weak sense.

Proof. This directly follows from Proposition 6.22 and Lemma 9.11.

Lemma 9.13. Suppose the scheme is simple, and Πh is a local mapping. Let PA, P > 0, and Q be the optimal695

values of the truncation error, of the formal order of accuracy and of the long­time simulation order. Then either
PA = P = Q or Q ⩾ P = PA + 1.

Proof. If |M0| = 1, then the statement of the lemma follows from Proposition 9.9. So without loss we assume
|M0| > 1. By Theorem 1 the values P andQ are integers and there holds either P = PA or P = PA+1. So we need
only to prove that Q ⩾ PA + 1 implies P = PA + 1.700

Since
∥ϵ̂(ϕ,Πh)∥ =

∥∥∥∥S(ϕ)( M (∗)(ϕ)v∗(ϕ,Πh)
M (0)(ϕ)v0(ϕ,Πh)

)∥∥∥∥ = O(|ϕ|PA+1),
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we have ∥M (∗)(ϕ)v∗(ϕ,Πh)∥ = O(|ϕ|PA+1). Then ∥v∗(ϕ,Πh)∥ = O(|ϕ|PA+1) and by stability

∥E∗(ϕ, ν,Πh)∥ ⩽ C|ϕ|PA+1.

Lemma 9.5 yields ∥M (0)(ϕ)∥ = O(|ϕ|Q+1) and hence

∥E0(ϕ, ν,Πh)∥ ⩽ C̃|ϕ|Q+1ν.

Combining these estimates we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ C ′|ϕ|PA+1 + C ′ν|ϕ|Q+1.

IfQ ⩾ PA+1 then by Theorem 6.17 the scheme possesses the formal order of accuracy PA+1, thus P = PA+1.

Theorem 3A. For a simple scheme, Theorem 3 holds.

Proof. For a simple scheme, the five statements of Theorem 3 follow from Lemmas 9.7, 9.10, 9.11, 9.12, 9.13, in
respective order.

The following proposition may be useful in a computer­based analysis of a scheme.705

Proposition 9.14. Let the scheme (2.8) be simple and Πh be a local mapping. Let Q ∈ N be such that
|detA(ϕ)| ⩽ c|ϕ|q+1 holds for q = Q and does not hold for q = Q + 1. Let PA be the optimal value of the or­
der of the truncation error. Let P = PA + 1 if Q > PA and P = PA otherwise. Then P and Q the optimal values of
the formal order of accuracy and of the long­time simulation order.

Proof. Denote by λ(ϕ) the only element of the matrix M (0)(ϕ). Since the eigenvalue λ = 0 of A(0) is simple, in
a neighborhood of ϕ = 0 there holds |λ(ϕ)| ⩽ 2cc−1

Π |ϕ|Q+1, where cΠ is the product of all nonzero eigenvalues of
A(0) taking into account their algebraic multiplicity. Substituting this estimate forM (0)(ϕ) = λ(ϕ) and (9.3) into
(9.2) and (9.1) we get

∥ε̂(ϕ, ν,Πh)∥ ⩽ C|ϕ|p + Cν|ϕ|Q+1,

where p is the optimal value of the formal order of accuracy. Thus by Theorem 6.17 the scheme possesses the formal710

order of accuracy p and the long­time simulation order Q.
Now we claim that the values p and Q are optimal. Assume the converse. Let Q′ > Q be the optimal value of the

long­time simulation order. Then by Lemma 9.5 there holds |λ(ϕ)| ⩽ C|ϕ|Q′+1, that contradicts the assumption.
The fact that p = P follows from Lemma 9.13.

9.3. The quasi­one­dimensional case715

Recall that a scheme of the form (2.8) is quasi­1D if the stencil S of the scheme belongs to a 1D subset of Zd, i. e.
there exists η ∈ Zd such that S ⊂ {mη,m = −M, . . . ,M}. The scheme is quasi­1D iff the matrix A(ϕ) depends
only on ϕ · e for some e ∈ Rd. In this section we will use the notation e for this vector.

In 1D case (when d = 1) every scheme of the form (2.8) is quasi­1D. In the multidimensional case an example of
a quasi­1D scheme is the DG method on simplicial translationally­invariant meshes when the vector of the transport720

velocity is collinear to one of the mesh edges.

Theorem 9.15 ([30], §3.5, Corollary 3; [26], §2.6.2). Let A(ψ) be a holomorphic and selfadjoint N × N ­matrix
defined on the interval [ψ1, ψ2]. Then there exists an unitary matrix U(ψ), holomorphic on [ψ1, ψ2], such that
U−1(ψ)A(ψ)U(ψ) = diag{λ1(ψ), . . . , λN (ψ)}.

Lemma 9.16. Let f(ψ) and g(ϕ) be holomorphic functions atψ = 0 andϕ = 0, correspondingly. Let e ∈ Ω. Suppose
there hold f(ψ) ∼ ψa as ψ → 0 and |f(ϕ · e)g(ϕ)| ⩽ c|ϕ|a+b, where a, b ∈ N ∪ {0}. Then in a neighborhood of
ϕ = 0 there holds

|f(ϕ · e)g(ϕ)| ⩽ δc|ϕ · e|a|ϕ|b, (9.11)

where δ depends on a+ b and the space dimension d only.725
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Proof. Let C̆ = {x ∈ Rd : e · x > |x|/2}. By Lemma A.6 there exist ek ∈ C̆ ∩ Ω, k = 1, . . . , Cd−1
b+d−1, such that

(ek · r)b form a basis in the space of homogeneous polynomials of order b. For different e the set of vectors ek can
be chosen the same modulo rotation. By assumption for each e′ ∈ C̆ ∩ Ω in a neighborhood of ψ = 0 there holds

|g(e′ψ)| ⩽ c|ψ|a+b

f((e · e′)ψ)
⩽ 2

c|ψ|b

(e · e′)a
⩽ 21+ac|ψ|b.

Thus |∂ng(0)/∂e′n| = 0 for n < b and |∂bg(0)/∂e′b| ⩽ 21+ab!c. By Lemma 5.1 we haveDmg(0) = 0 for |m| < b

and |Dmg(0)| ⩽ δc for |m| = b, where δ = 21+ab!
∑

k |γ
(m)
k | does not depend on e.

Lemma 9.17. Let the scheme be quasi­1D, Πh be a local mapping, 0 < P ⩽ Q < ∞. Then the function FP,Q(ϕ)
defined by (8.9) is bounded as ϕ→ 0 iff the function

F̃P,Q(ϕ) = |ϕ|−2⌈P⌉v∗(ϕ,Πh)
(
A∗(ϕ)A(ϕ) + |ϕ · e|2(⌈Q⌉+1−⌈P⌉)

)−1

A∗(ϕ)A(ϕ)v(ϕ,Πh).

is bounded as ϕ→ 0.

Proof. Throughout this proof we will use the notation ψ ≡ ϕ · e. By Theorem 9.15 there exist holomorphic matrix
function U and holomorphic functions λj such that U−1(ψ)A∗(ϕ)A(ϕ)U(ψ) = diag{λj(ψ)}. Therefore,

FP,Q(ϕ) = |ϕ|−2P
∑
j∈M0

|(U−1(ψ)v(ϕ,Πh))j |2
λj(ψ)

λj(ψ) + |ϕ|2(Q+1−P )
,

F̃P,Q(ϕ) = |ϕ|−2⌈P⌉
∑
j∈M0

|(U−1(ψ)v(ϕ,Πh))j |2
λj(ψ)

λj(ψ) + |ψ|2(⌈Q⌉+1−⌈P⌉) .

First assume that F̃P,Q(ϕ) is bounded. Then we have

F⌈P⌉,⌈Q⌉(ϕ) ⩽ F̃⌈P⌉,⌈Q⌉(ϕ) = F̃P,Q(ϕ) <∞.

Thus by Theorem 8.5 the scheme possesses the formal order of accuracy ⌈P ⌉ and the long­time simulation order ⌈Q⌉.
By Corollary 6.18 it possesses the formal order of accuracy P and the long­time simulation order Q. Using again730

Theorem 8.5, we obtain that FP,Q(ϕ) then is bounded as ϕ tends to zero.
Now assume that FP,Q(ϕ) is bounded in a neighborhood of ϕ = 0. Then for each j ∈M0 there holds

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j |2 ⩽ C|ϕ|2P (λj(ψ) + |ϕ|2(Q+1−P )) (9.12)

in a neighborhood of ϕ = 0. The function λj(ψ) is holomorphic at ψ = 0 and non­negative (as the eigenvalue of
matrix A∗(ψ)A(ψ)). Thus either λj(ψ) = cλψ

2qj (1 + O(ψ)) as ψ → 0 with some cλ > 0 and qj ∈ N ∪ {0} or
λj(ψ) ≡ 0 (in this case we put qj = +∞).

The function (U−1(ϕ · e)v(ϕ,Πh))j is holomorphic at ϕ = 0, let rj be the lowest order of the terms in its Taylor
series. From (9.12) we have

2qj + 2rj ⩾ 2P +min{2qj , 2(Q+ 1− P )}

or, equivalently,
qj + rj ⩾ min{qj + P,Q+ 1}.

Since rj , qj ∈ N, we have
qj + rj ⩾ min{qj + ⌈P ⌉, ⌈Q⌉+ 1}.

If qj + ⌈P ⌉ < ⌈Q⌉+ 1, then rj ⩾ ⌈P ⌉, so |(U−1(ψ)v(ϕ,Πh))j |2 ⩽ c̃|ϕ|2⌈P⌉ and thus

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j |2 ⩽ c̃|ϕ|2⌈P⌉λj(ψ).
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If qj + ⌈P ⌉ ⩾ ⌈Q⌉+ 1, then rj ⩾ ⌈Q⌉+ 1− qj and

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j |2 ⩽ c̃ψ2qj |ϕ|2(⌈Q⌉+1−qj) =

= c̃ψ2(⌈Q⌉+1−⌈P⌉)ψ2(qj−(⌈Q⌉+1−⌈P⌉))|ϕ|2(⌈Q⌉+1−qj) ⩽ c̃ψ2(⌈Q⌉+1−⌈P⌉)|ϕ|2⌈P⌉.

Combining the results for both cases, in a neighborhood of ϕ = 0 we get

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j |2 ⩽ c̃|ϕ|2⌈P⌉(λj(ψ) + |ψ|2(⌈Q⌉+1−⌈P⌉)). (9.13)

From here, the statement of the lemma is obvious.735

Lemma 9.18. Suppose the scheme is quasi­1D and Πh is a local mapping. Then the optimal values of the formal
order of accuracy and of the long­time simulation order are integers.

Proof. The optimal order of accuracy P is integer by Theorem 1. Let the scheme possess the formal order of accuracy
P and a long­time simulation order Q. By Theorem 8.5, FP,Q(ϕ) is bounded as ϕ → 0. By Lemma 9.17 so is
F̃P,Q(ϕ) and, applying this Lemma again, so is FP,⌈Q⌉(ϕ). By Theorem 8.5 the scheme possesses the formal order740

P and the long­time simulation order ⌈Q⌉.

Lemma 9.19. Let the scheme be quasi­1D, Πh be a local mapping, P ∈ N. Let the scheme possess the formal order
of accuracy P and the long­time simulation order s for each s ⩾ P . Then the scheme possesses the formal order of
accuracy P and the long­time simulation order∞.

Proof. By Theorem 8.5 the functional FP,s(ϕ) is bounded in a neighborhood of ϕ = 0. Thus using the notation of
Lemma 9.17 for each j ∈M0 and s ⩾ P there holds

qj + rj ⩾ min{qj + P, s+ 1}.

Thus for each j there holds either qj = +∞ or rj ⩾ P . Put w(ϕ) = U(ψ)diag{χj}U−1(ψ)v(ϕ,Πh) where χj = 0
if rj ⩾ P and χj = 1 otherwise. Then

∥w(ϕ)− v(ϕ,Πh)∥ ⩽ c|ϕ|P , A(ϕ)w(ϕ) = 0,

and it remains to apply Lemma 8.1.745

Lemma9.20. LetΠh andPh be local mappings with kernelsµξ, µ̂ξ ∈ (W q
2 (G))

∗ (or (Cq(G))∗), such that ⟨µ̂ξ, 1⟩ ̸= 0
for each ξ ∈ M0. Suppose the scheme (2.8) is quasi­1D and possesses the formal order of accuracy P ∈ N and the
long­time simulation order Q ∈ N in the sense of Πh on HR

per(Rd) (or CR
per(Rd)), where R = max{Q+ 1, q}. Then

there exist real­valued diagonal matrices C(m) such that the scheme possesses the truncation error of order Q in the
sense of Π(P,Q)

h given by (2.12).750

Proof. By Theorem 8.5, FP,Q(ϕ) is bounded as ϕ→ 0. By Lemma 9.17 so does F̃P,Q(ϕ). Put

w(ϕ) =
(
A∗(ϕ)A(ϕ) + |ϕ · e|2(Q+1−P )

)−1

|ϕ · e|2(Q+1−P )v(ϕ,Πh) (9.14)

and note that

F̃P,Q(ϕ) = |ϕ|−2P ∥v(ϕ,Πh)− w(ϕ)∥2 + |ϕ|−2P |ϕ · e|−2(Q−P+1)∥A(ϕ)w(ϕ)∥2. (9.15)

(the proof of this fact repeats the one of Lemma 8.4). By construction, w(ϕ) = W (ϕ)/d(ψ), there W (ϕ) is holo­
morphic at ϕ = 0 and d(ψ) = det(A∗(ψe)A(ψe) + ψ2(Q+1−P )). Let d(ψ) ∼ cψq as ψ → 0, where c ̸= 0. All the
terms in the Taylor expansion of the numerator contain the multiplier ψq , otherwise w(ϕ) is unbounded and so does
F̃P,Q(ϕ), which contradicts the assumption. This proves that w(ϕ) is analytical at ϕ = 0.

From (9.15) and the boundedness of F̃P,Q it follows that ∥v(ϕ,Πh)− w(ϕ)∥ ⩽ C̃|ϕ|P and

∥A(ϕ)w(ϕ)∥|ϕ · e|P ⩽ C̃|ϕ · e|Q+1|ϕ|P ⩽ C̃|ϕ|Q+1+P .
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Since A(ϕ)w(ϕ) is holomorphic, this implies A(ϕ)w(ϕ) = O(|ϕ|Q+1).755

By Lemma 6.7 there exist C(m), P ⩽ |m| ⩽ Q, such that for Π(P,Q)
h there holds

v(ϕ,Π
(P,Q)
h ) = w(ϕ) +O(|ϕ|Q+1).

By the triangle inequality we get

ϵ̂(ϕ,Π
(P,Q)
h ) = A(ϕ)v(ϕ,Π

(P,Q)
h ) = O(|ϕ|Q+1).

By Theorem 6.15 the scheme possesses the truncation error of orderQ in the sense ofΠ(P,Q)
h , so the coefficients C(m)

satisfy the statement of the lemma.

Lemma 9.21. Let the scheme (2.8) be quasi­1D,Πh be a local mapping with a kernel µξ ∈ (W r
2 (G))

∗ (or (Cr(G))∗),
and let 0 < P ⩽ Q < ∞. Suppose for each ẽ ∈ Ω̊⌈Q⌉ the scheme possesses the formal order of accuracy P and the
long­time simulation orderQ onHR

per,ẽ(Rd) (orC⌈R⌉
per,ẽ(Rd)). Then the scheme possesses the formal order of accuracy760

⌈P ⌉ and the long­time simulation order ⌈Q⌉ on HR
per(Rd) (or C⌈R⌉

per (Rd)).

Proof. We will use the notation of Lemma 9.17. By assumption, for each direction ẽ ∈ Ω̊⌈Q⌉ the scheme possesses
the order of accuracy P and the long­time simulation order Q on Hs

per,ẽ(Rd) for s large enough. By Lemma 8.6, the
functional FP,Q(ψẽ) is bounded as ψ tends to zero. Thus for each j ∈M0 and each ẽ ∈ Ω̊Q there holds√

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j | ⩽ Cẽ|ϕ|P (
√
λj(ψ) + |ϕ|Q+1−P ) ⩽ 2Cẽ|ϕ|min{Q+1,P+qj},

where ϕ belongs to a neighborhood of zero in span{ẽ}. Since the function on the left­hand side is the absolute value
of a function analytical at ϕ = 0, by Lemma 5.3 in a neighborhood of zero we have√

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j | ⩽ C|ϕ|min{⌈Q⌉+1,⌈P⌉+qj},

where C does not depend on e.
If for a particular j there holds ⌈P ⌉ ⩽ ⌈Q⌉+ 1− qj , then we have

|(U−1(ψ)v(ϕ,Πh))j | ⩽ c̃|ϕ|⌈P⌉

and hence (9.13). If qj > ⌈Q⌉+ 1− ⌈P ⌉, then by Lemma 9.16 we have

λj(ψ)|(U−1(ψ)v(ϕ,Πh))j |2 ⩽ c′ψ2qj |ϕ|2(⌈Q⌉+1−qj) ⩽ c′ψ2(⌈Q⌉+1−⌈P⌉)|ϕ|2⌈P⌉,

and we again have (9.13). Thus F̃⌈P⌉,⌈Q⌉(ϕ) is bounded as ϕ → 0. By Lemma 9.17 so does F⌈P⌉,⌈Q⌉(ϕ) and by
Theorem 8.5 the scheme possesses the formal order of accuracy ⌈P ⌉ and the long­time simulation order ⌈Q⌉.

Lemma 9.22. Suppose the scheme is quasi­1D and Πh is a local mapping. Then the optimal values of the formal765

order of accuracy and of the long­time simulation order coincide with the ones in the weak sense.

Proof. Let the scheme possess the formal order of accuracy P and the long­time simulation orderQ in the weak sense.
By Proposition 6.22 for each ẽ ∈ Ω̊ the scheme possesses the formal order of accuracy P and the long­time simulation
order in the strong sense on HR

per,ẽ(Rd). It remains to use Lemma 9.21.

Theorem 3B. For a quasi­1D scheme, Theorem 3 holds.770

Proof. For a quasi­1D scheme, the first four statements of Theorem 3 follow from Lemmas 9.18, 9.20, 9.21, 9.22,
in respective order. The fifth statement of Theorem 3, which only concerns only simple schemes, has been already
proved in Theorem 3A.
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10. Algorithms for scheme analysis

Throughout this section we consider a scheme of the form (2.8), a local mapping Πh, and assume that the scheme775

is stable and 0­exact. For the cases where the existence of a local mapping of the form (2.12) is proved it is possible
to construct algorithms for the analysis of the scheme.

10.1. The order of the truncation error
Lemma 10.1. Let PA ∈ N ∪ {0}. Then the following statements are equivalent.

1. The scheme possesses the truncation error of order PA.780

2. There holds ∥ϵ̂(ϕ,Πh)∥ = O(|ϕ|PA+1) as ϕ→ 0.
3. For each multiindexm such that |m| ⩽ PA there holds (ϵ1(rm/m!,Π1))0 = 0.

Proof. The equivalence of statements 1 and 2 is by Lemma 6.10 and boundedness of Z(ϕ) and Z−1(ϕ). Now we
prove the equivalence of statements 2 and 3.

Denote by Π̃h the operator taking f to Π̃hf = hϵh(f,Πh). By (6.19) we have

Z(ϕ)ϵ̂(ϕ,Πh) = −F [hϵh(eiϕ·r/h,Πh)](ϕ) = −F [Π̃he
iϕ·r/h](ϕ).

The mapping Π̃h is of the form (2.11) and enjoys all the properties of a local mapping with the only exception that
Π̃h1 = 0 (recall that PA ⩾ 0). Particularly, Lemma 6.5 remains valid for Π̃h. Then by Lemma 6.5 we obtain

Z(ϕ)ϵ̂(ϕ,Πh) = −v(ϕ, Π̃h) = −(Π̃1e
iϕ·r)0 =

= −
∑

0⩽|m|<∞

ϕm
(
Π̃1
rm

m!

)
0

= −
∑

0⩽|m|<∞

ϕm
(
ϵ1

(
rm

m!
,Π1

))
0

.

Since Z(ϕ) and Z−1(ϕ) are uniformly bounded, the equivalence of statements 2 and 3 is obvious.785

Lemma 10.2. Let PA ∈ N∪{0} and e ∈ Ω. Then ∥ϵ̂(eψ,Πh)∥ = O(|ψ|PA+1) as ψ → 0 iff for eachm = 0, . . . , PA

there holds (ϵ1((r · e)m/m!,Π1))0 = 0.

Proof. The proof repeats the one of the previous lemma.

Recall the following standard algorithm.

Algorithm 1 (to detect the optimal order of the truncation error).790

1. Put PA = 0.
2. Compute fm = −(ϵ1(r

m/m!,Π1))0 for eachm such that |m| = PA + 1.
3. If for eachm with |m| = PA + 1 there holds fm = 0 then put PA = PA + 1 and return to the step 2.

Proposition 10.3. If Algorithm 1 returns the value PA, then PA is the optimal order of the truncation error. If Algo­
rithm 1 loops endlessly, then the scheme is exact, i. e. ϵh(f,Πh) = 0 for each f .795

Proof. By Theorem 1 the optimal order of the truncation error is integer, so the first statement follows from
Lemma 10.1. If the algorithm loops endlessly, then by Lemma 10.1 there holds ∥ϵ̂(ϕ,Πh)∥ = O(|ϕ|s) for each
s ∈ N. Since ϵ̂(ϕ,Πh) is holomorphic at ϕ = 0, we have ϵ̂(ϕ,Πh) = 0 in a neighborhood of ϕ = 0, and it remains
to apply Lemma 6.16.
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10.2. The order of the truncation error in the sense of auxiliary mappings800

Let Πh and Ph be local mappings, and the kernel of Ph satisfy ⟨µ̂ξ, 1⟩ ̸= 0 for each ξ ∈ M0. Let C(m) be
real­valued diagonal matrices. Now we discuss the truncation error in the sense of the mappings Π(p,q)

h given by
(2.12).

Lemma 10.4. LetΠ(p,q)
h be an operator of the form (2.12)with coefficients C(m). The scheme possesses the truncation

error of order PA ∈ N in the sense of Π(p,q)
h if and only if for each |m| ⩽ PA there holds

L(0)C(m)(P11)0 = −
(
ϵ1

(
rm

m!
,Π

(p,min{|m|−1,q})
1

))
0

, (10.1)

where the mappings Π(p,min{|m|−1,q}) are based on the same coefficients C(m).
Proof. If q < PA, put Cm = 0 for each q < |m| ⩽ PA, so without loss we can assume that q ⩾ PA.805

For each |m| ⩽ PA we have(
ϵ1

(
rm

m!
,Π

(p,PA)
1

))
0

=

(
−ZΠ(p,PA)

1 (ω · ∇)
rm

m!
+ LΠ

(p,PA)
1

rm

m!

)
0

=

= −
∑
η∈S

Zη

(
Π

(p,PA)
1 (ω · ∇)

rm

m!

)
η

+
∑
η∈S

Lη

(
Π

(p,PA)
1

rm

m!

)
η

.

The function (ω · ∇)rm is a polynomial of order not higher than |m| − 1; thus Π(p,PA)
1 acts on it the same way as

Π
(p,|m|−1)
1 . Besides,(

Π
(p,PA)
1

rm

m!

)
η

=

(
Π

(p,|m|−1)
1

rm

m!

)
η

+ C(m)(P11)η =

(
Π

(p,|m|−1)
1

rm

m!

)
η

+ C(m)(P11)0.

Therefore, using L(0) =
∑
η Lη we have(

ϵ1

(
rm

m!
,Π

(p,PA)
1

))
0

=

(
ϵ1

(
rm

m!
,Π

(p,|m|−1)
1

))
0

+ L(0)C(m)(P11)0.

By Lemma 10.1 the scheme possesses the truncation error of order PA iff the left­hand side of this identity is zero for
each |m| ⩽ PA. Thus we get the statement of the lemma.

In 1D case equation (10.1) takes a form

L(0)C(m)(P11)0 = ω
∑
η∈S

Zη

(Π1
xm−1

(m− 1)!

)
η

+

min{m−1,q}∑
n=p

C(n)

(
P1

xm−n−1

(m− n− 1)!

)
η

−

−
∑
η∈S

Lη

(Π1
xm

m!

)
η

+

min{m−1,q}∑
n=p

C(n)

(
P1

xm−n

(m− n)!

)
η

 .
10.3. The order of accuracy
Algorithm 2 (to detect the order of accuracy).
1. Detect the order of the truncation error PA using Algorithm 1.810

2. Compute fm = −(ϵ1(r
m/m!,Π1))0 for eachm such that |m| = PA + 1.

3. If for eachm with |m| = PA + 1 there holds fm ∈ ImL(0) then put P = PA + 1, otherwise put P = PA.

Theorem 10.5. The value P given by Algorithm 2 coincides with the optimal value of the order of accuracy.
Proof. Let Ph be any local mapping such that (P11)0,ξ ̸= 0 for each ξ ∈ M0. Obviously, the algorithm returns the
value P = PA + 1 iff for each multiindexm such that |m| = PA + 1 the system L(0)C(m)(P11)0 = f (m) (as a815

system for the coefficients of C(m)) is consistent. By Lemma 10.4 this is equivalent to the existence of C(m) such that
the scheme possesses the order PA + 1 of the truncation error in the sense of Π(PA+1,PA+1)

h given by (2.12) with the
chosen mapping Ph. By Theorem 1 this holds iff the scheme possesses the order of accuracy PA + 1.
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10.4. The quasi­one­dimensional case
Algorithm 3 (to detect the formal and the long­time simulation orders in the quasi­1D case).820

1. Detect the optimal value of the order of accuracy P using Algorithm 2.
2. Choose any local mapping Ph such that (P11)0,ξ ̸= 0 for each ξ ∈M0.
3. Put Q′ = P .
4. While the set of equations (ϵ1(rm/m!,Π

(P,Q′+1)
1 ))0 = 0, where 0 ⩽ |m| ⩽ Q′ + 1, is consistent as a system for

diagonal matrices {C(m), P ⩽ |m| ⩽ Q′ + 1}, increment Q′.825

Theorem 10.6. Let the scheme (2.8) be stable and quasi­1D. Let P and Q be its optimal values of the formal order
of accuracy and the long­time simulation order (see Definition 5). If Q = ∞, then the algorithm loops endlessly.
Otherwise the values P and Q′ given by Algorithm 3 coincide with P and Q.

Proof. First assume Q < ∞. By Theorem 3 there exist C(m), P ⩽ |m| ⩽ Q, such that the scheme possesses the
truncation error of orderQ in the sense of Π(P,Q)

h . Then ϵ̂(ϕ,Π(P,Q)
h ) = O(|ϕ|Q+1) and by Lemma 10.1 the matrices830

C(m) satisfy the system checked at step 4 forQ′ = Q−1. Thus the algorithm either returnsQ′ ⩾ Q or loops endlessly.
If Q = ∞, then the for each q ∈ N the scheme possesses the formal order of accuracy P and the long­time

simulation order q. By the argument above, the algorithm will find coefficients C(m) for each P ⩽ |m| ⩽ q. Since q
may be chosen arbitrary high, the algorithm will loop endlessly.

Now suppose that the algorithm returns values P and Q′ < ∞. Let {C(m), P ⩽ |m| ⩽ Q′} be a solution of the835

last consistent system and let Π(P,Q′)
h be given by (2.12) with these coefficients (if no systems checked at step 4 were

consistent, put Π(P,Q′)
h = Πh). By Lemma 10.1 there holds ϵ̂(ϕ,Π(P,Q′)

h ) = A(ϕ)v(ϕ,Π
(P,Q′)
h ) = O(|ϕ|Q′+1).

Obviously, v(ϕ,Π(P,Q′)
h ) − v(ϕ,Πh) = O(|ϕ|P ). Thus by Lemma 8.1 the scheme possesses the formal order of

accuracy P and the long­time simulation order Q′ in the sense of Πh, i. e. there holds Q ⩾ Q′.
If the algorithm loops endlessly, then arguing as above we obtain that the scheme possesses the formal order of840

accuracy P and the long­time simulation order s for each s ∈ N, s ⩾ P . By Lemma 9.19 it possesses the formal order
of accuracy P and the long­time simulation order Q = ∞.

The following proposition simplifies the analysis in practice allowing to reduce the number of unknowns while
processing Algorithm 3. Note that it assumes the additional condition ⟨µξ, 1⟩ ̸= 0 for each ξ ∈M0.

Proposition 10.7. Let Πh and Ph be local mappings with kernels µξ, µ̂ξ such that ⟨µξ, 1⟩ ̸= 0 and ⟨µ̂ξ, 1⟩ ̸= 0 for845

each ξ ∈ M0. Let p, q ∈ N. Suppose there exist real­valued diagonal matrices C(m), p ⩽ |m| ⩽ q, such that the
scheme possesses the truncation error of order q in the sense of Π(p,q)

h given by (2.12). For eachm, p ⩽ |m| ⩽ q,
take any ξm ∈ M0 and cm ∈ R. Then there exist real­valued diagonal matrices C̃(m), p ⩽ |m| ⩽ q, such that
C̃
(m)
ξm,ξm

= cm and the scheme possesses the truncation error of order q in the sense of Π̃(p,q)
h given by (2.12) with the

substitution C̃(m) for C(m).850

Proof. Denote fp−1(ϕ) = v(ϕ,Π
(p,q)
h ). The function fp−1(ϕ) is holomorphic by construction; by assumption

(fp−1(0))ξ ̸= 0 for each ξ ∈M0. Denote

Ym[f ] =
1

m!

1

i|m| D
m

(
(f(ϕ))ξm

(v(ϕ,Ph))ξm

)∣∣∣∣
ϕ=0

, g(ϕ) = v(ϕ,Πh).

For k = p, . . . , q define inductively

fk(ϕ) = fk−1(ϕ)

(
1 +

∑
|m|=k

am(iϕ)m
)
,

choosing constants am, |m| = k, to satisfy

Ym[fk − g] = cm. (10.2)
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Each of these equations easily reduces to the linear equation

(v(0,Πh))ξm
(v(0,Ph))ξm

am + Ym[fk−1 − g] = cm,

which is uniquely solvable since by assumption (v(0,Πh))ξm ̸= 0. Moreover, fk satisfies (10.2) for each |m| < k.
Indeed, for k = p this is by construction. Let it be true for fk−1. If |m| ≤ k − 1 then

Ym[fk − g] = Ym[fk−1 − g] + Ym

[
fk−1(ϕ)

∑
|n|=k

an(iϕ)
n

]
= cm +

∑
|n|=k

anYm[fk−1(ϕ)(iϕ)
n].

It remains to note that Ym[f(ϕ)(iϕ)n] = 0 if |n| > |m|.
Denote W (ϕ) = fq(ϕ). By construction, there holds W (ϕ) = v(ϕ,Πh)(1 + O(|ϕ|p)) and

W (ϕ) = v(ϕ,Π
(p,q)
h )(1 +O(|ϕ|p)). By Lemma 6.7 there exist real­valued diagonal matrices C̃(m), p ⩽ |m| ⩽ q,

such thatW (ϕ) = v(ϕ, Π̃
(p,q)
h ) +O(|ϕ|q+1); by construction from (10.2) (see (6.13)) we have C̃(m)

ξm,ξm
= cm. Then

ϵ̂(ϕ, Π̃
(p,q)
h ) = A(ϕ)v(ϕ, Π̃

(p,q)
h ) = A(ϕ)W (ϕ) +O(|ϕ|q+1) =

= A(ϕ)v(ϕ,Π
(p,q)
h )(1 +O(|ϕ|p)) +O(|ϕ|q+1) = O(|ϕ|q+1).

By Theorem 6.15 the scheme possesses the truncation error of order q in the sense of Π̃(p,q)
h .

10.5. The simple case
For a simple scheme the optimal values of the formal order of accuracy and the long­time simulation order can be

found by the following algorithm.855

Algorithm 4 (to detect the formal and long­time simulation orders in the simple case).

1. Detect the order of accuracy PA using Algorithm 1.
2. Choose any local mapping Ph such that (P11)0,ξ ̸= 0 for each ξ ∈M0.
3. Putm = PA + 1.
4. Compute fm = −(ϵ1(r

m/m!,Π
(PA+1,m−1)
1 ))0 for eachm such that |m| = m, substituting into Π

(PA+1,m−1)
h860

the previously found coefficients C(n), PA + 1 ⩽ |n| ⩽ m− 1.
5. If for eachm with |m| = m there holds fm ∈ ImL(0), then:

• find any diagonal matrices C(m) satisfying L(0)C(m)(P11)0 = fm;
• increasem by one;
• return to the step 4.865

6. Put Q′ = m− 1.
7. Put P ′ = PA if Q′ = PA and P ′ = PA + 1 otherwise.

Note that at step 5, since RankL(0) = |M0| − 1, the equation specifies a one­parametric family of diagonal
matrices Cm. Any matrix of this family may be chosen.

Theorem 10.8. Consider a simple scheme of the form (2.8) and a local mapping Πh. Let P and Q be its optimal870

values of the formal order of accuracy and the long­time simulation order (see Definition 5). If Q = ∞, then the
algorithm loops endlessly. Otherwise Algorithm 4 returns values P ′ = P and Q′ = Q.

Proof. Let PA be the optimal order of the truncation error. Let P ′ and Q′ be the values returned by the algorithm; if
it loops endlessly, formally put P ′ = PA +1, Q′ = ∞. We need to prove thatQ′ = Q, then the equality P ′ = P will
follow from statement 5 of Theorem 3.875

First we prove that Q ⩾ Q′. If Q′ = PA, this is obvious by stability. If PA < Q′ < ∞, arguing as in the proof
of Theorem 10.6 we get that the scheme possesses the orders P ′ and Q′. By Lemma 9.6 it possesses the orders P and
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Q′, hence Q ⩾ Q′. If Q′ = ∞, using the same argument, for each s ⩾ P ′ the scheme possesses the formal order of
accuracy P ′ and the long­time simulation order s. By Lemma 9.8 it possesses the formal order of accuracy P ′ and the
long­time simulation order Q = ∞.880

Now we prove thatQ′ ⩾ Q. LetΠ(PA+1,Q′)
h be given by (2.12) with the coefficients C(m) found by the algorithm.

By construction and Lemma 10.4, (
ϵ1

(
rm

m!
,Π

(PA+1,Q′)
1

))
0

= 0

for each |m| ⩽ Q′, i. e. the scheme possesses the truncation error of order Q′ in the sense of Π(PA+1,Q′)
h . Assume

that Q > Q′. If Q′ is an optimal value of the truncation error in the sense of Π(PA+1,Q′)
h , then by statement 5 of

Theorem 3 the scheme possesses the formal order of accuracy Q′ + 1 in the sense of Π(PA+1,Q′)
h . By statement 3 of

Theorem 1 there exist C(m), |m| = Q′ +1, such that the scheme possesses the truncation error of orderQ′ +1 in the
sense of Π(PA+1,Q′+1)

h . If Q′ is not an optimal value, then the scheme possesses the truncation error of order Q′ + 1885

in the sense of Π(PA+1,Q′+1)
h with C(m) = 0, |m| = Q′ + 1. These coefficients C(m), |m| = Q′ + 1, give a solution

of the equation to solve at step 5, thus the algorithm makes one more step. This contradiction proves thatQ′ ⩾ Q and
thus the whole Theorem.

Note that in the quasi­1D case Algorithm 4 may give a wrong result (see Section 11.3).

11. 1D examples890

Throughout this section we consider 1D transport equation (2.6) with transport velocity ω = 1, i. e.
∂v/∂t+ ∂v/∂x = 0, and put a1 = 1, i. e. the parameter h coincides with the mesh step.

11.1. P1 discontinuous Galerkin method
Consider the discontinuous Galerkin method (its definition may be found, for example, in [31]) based on the

piecewise­linear polynomials on the uniform mesh with the nodes xj = jh. On each cell (xj , xj+1) define two basis
functions:

ϕLj (x) =
xj+1 − x

h
, ϕRj (x) =

x− xj
h

,

and extend these functions by zero outside (xj , xj+1). For the numerical solution

u(t, x) =

N−1∑
j=0

(
uLj (t)ϕ

L
j (x) + uRj (t)ϕ

R
j (x)

)
,

the DG scheme gives (
1
3

1
6

1
6

1
3

)
duj
dt

+
1

h

[(
1
2

1
2

− 1
2

1
2

)
uj +

(
0 −1
0 0

)
uj−1

]
= 0. (11.1)

It has the form (2.8) with S = {0,−1},

Z−1 = 0, Z0 =

(
1
3

1
6

1
6

1
3

)
, L−1 =

(
0 −1
0 0

)
, L0 =

(
1
2

1
2

− 1
2

1
2

)
.

By definition (6.14) we have

A(ϕ) = iϕI −
(

1
3

1
6

1
6

1
3

)−1( 1
2

1
2 − e−iϕ

− 1
2

1
2

)
=

(
iϕ− 3 −1 + 4e−iϕ

3 iϕ− 1− 2e−iϕ

)
.

We see that A(0) ̸= 0 and

detA(ϕ) = (−2iϕ− 6)e−iϕ + (−ϕ2 − 4iϕ+ 6) =
ϕ4

12
+O(ϕ5).
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The eigenvalues of the matrixA(ϕ) are λ±(ϕ) = iϕ− 2− e−iϕ±κ(ϕ), where κ(ϕ) = (e−2iϕ+10e−iϕ− 2)1/2.
The branch of the root is such that κ(0) = 3. The right eigenvectors matrix is

S(ϕ) =
1

4e−iϕ − 1

(
4e−iϕ − 1 −4e−iϕ + 1

1− e−iϕ + κ(ϕ) −1 + e−iϕ + κ(ϕ)

)
=
(
r+(ϕ) r−(ϕ)

)
,

the left eigenvectors matrix is

S−1(ϕ) =
1

2κ(ϕ)

(
−1 + e−iϕ + κ(ϕ) 4e−iϕ − 1
−1 + e−iϕ − κ(ϕ) 4e−iϕ − 1

)
=

(
l+(ϕ)
l−(ϕ)

)
.

The first column in S(ϕ) and, correspondingly, the first row in S−1(ϕ) correspond to λ+(ϕ), the second ones to
λ−(ϕ). The eigenvalues can be approximated as λ+(ϕ) ≈ −ϕ4/72 + O(ϕ5), λ−(ϕ) = −6 + O(ϕ). Clearly, λ+(ϕ)
corresponds to the physical mode(

uLj (t)
uRj (t)

)
= exp

(
i
ϕ

h
(jh− t)

)
exp

(
λ+(ϕ)

t

h

)
r+(ϕ)

and λ−(ϕ) to the spurious one (the same expression with λ+(ϕ), r+(ϕ) replaced by λ−(ϕ), r−(ϕ)).
In order to speak about the accuracy we need to specify a map Πh. For simplicity we use the pointwise map

(Πhf)
L
j = f(xj), (Πhf)

R
j = f(xj+1). Then v(ϕ,Πh) = (1, eiϕ)T and

S−1(ϕ)v(ϕ,Πh) =
1

2κ(ϕ)

(
3 + e−iϕ − eiϕ + κ(ϕ)
3 + e−iϕ − eiϕ − κ(ϕ)

)
=

(
1 +O(ϕ)

1
12ϕ

2 +O(ϕ3)

)
.

Using the notation used in Section 7 we have ℵ̄ = {0, 4}, p0 = 2, p4 = 0. Thus by Lemma 7.6 the scheme possesses895

the 1st order of the truncation error and the optimal error estimate has the form O(h2 + h3t).
This result can be also obtained with the help of Proposition 9.14 without the calculation of eigenvalues. Since

dimKerA(0) = 1, the scheme is simple. By construction, the scheme is exact on linear functions and thus possesses
the truncation error of the first order. Using the fact that detA(ϕ) = cϕ4 + O(|ϕ|5), c ̸= 0, by Proposition 9.14 the
scheme possesses the second order of accuracy and the third order in the long­time simulation. If we additionally900

verify that the scheme is not exact on quadratic polynomials, then by Proposition 9.14 we get that these values are
optimal.

Replacing Πh by Π̃h it is possible to improve p0 and hence the order of the truncation error and the formal order
of accuracy. For this purpose we need to reduce the second component of S−1(ϕ)v(ϕ, Π̃h). We can nullify it if we
put w(ϕ) = γ(ϕ)r+(ϕ) for some γ(ϕ) ∈ C \ {0} such that γ(−ϕ) = γ(ϕ) (for example, γ(ϕ) ≡ 1) and get Π̃h by
Lemma 6.6 such that v(ϕ, Π̃h) = w(ϕ) in a neighborhood of ϕ = 0. This map is nonlocal; to specify a local map we
need to approximate w(ϕ). For example, if we put γ(ϕ) ≡ 1, define Ph as (Phf)η,L = (Phf)η,R = f(hη), and use
Lemma 6.7 then we get the mapping Π(2,3)

h given by

(Π
(2,3)
h f)η,L = f(ηh), (Π

(2,3)
h f)η,R = f((η + 1)h) +

1

6
h2f ′′(ηh) +

5

18
h3f ′′′(ηh). (11.2)

In this case v(ϕ,Π(2,3)
h ) = (1, eiϕ − ϕ2/6− 5iϕ3/18)T . The scheme (11.1) possesses the truncation error of order 3

in the sense of Π(2,3)
h . Doing the same with Ph = Πh we get the mapping Π̃(2,3)

h given by

(Π̃
(2,3)
h f)η,L = f(ηh), (Π̃

(2,3)
h f)η,R = f((η + 1)h) +

1

6
h2f ′′((η + 1)h) +

1

9
h3f ′′′((η + 1)h),

and thus v(ϕ, Π̃(2,3)
h ) = (1, eiϕ(1 − ϕ2/6 − iϕ3/9))T . Approximations of derivatives in (11.2) with enough order

yield other suitable mappings.
905

Now we demonstrate the method of auxiliary mapping with no use of the eigenvectors. We have

L(0) = L0 + L−1 =

(
1
2 − 1

2
− 1

2
1
2

)
.
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Since dimKerL(0) = 1, we will use Algorithm 4. We will use Ph defined as (Phf)η,L = (Phf)η,R = f(hη), then
e⃗ = v(0,Ph) = (1, 1)T . Substituting a linear function into the scheme we see that the scheme possesses the first
order of the truncation error. Doing the same with a quadratic polynomial we see the optimal value of the order of the
truncation error is equal to 1.

We need to compute f2 = −(ϵ1(x
2/2,Π1))0. We have

f2 =
(
ZΠ1x− LΠ1(x

2/2)
)
0
= Z0(Π1x)0 − L0(Π1(x

2/2))0 − L−1(Π1(x
2/2))−1

and
f2 =

(
1
3

1
6

1
6

1
3

)[
0
1

]
−
(

1
2

1
2

− 1
2

1
2

)[
0

1/2

]
−
(

0 −1
0 0

)[
1/2
0

]
=

[
−1/12
1/12

]
.

The system (
1
2 − 1

2
− 1

2
1
2

)
C(2)e⃗ =

(
−1/12
1/12

)
has the solution

C(2) =

(
0 0
0 1/6

)
+ c2I.

According to the algorithm the value of c2 can be set arbitrarily; put c2 = 0. Now we compute910

f3 = −(ϵ1(x
3/6,Π

(2,2)
1 ))0 where Π

(2,2)
h is prescribed by (2.12) with the coefficients C(2) we just found. We have

f3 =

(
1
3

1
6

1
6

1
3

)[(
0

1/2

)
+ C(2)

(
1
1

)]
−
(

1
2

1
2

− 1
2

1
2

)[(
0
1/6

)
+ C(2)

(
0
0

)]
−

−
(

0 −1
0 0

)[(
−1/6
0

)
+ C(2)

(
−1
−1

)]
=

(
−5/36
5/36

)
.

The system (
1
2 − 1

2
− 1

2
1
2

)
C(3)e⃗ =

(
−5/36
5/36

)
has the solution

C(3) =

(
0 0
0 5/18

)
+ c3I.

The map Π(2,3)
h generated by chosen Πh, Ph and matrices C(2) and C(3) with c2 = c3 = 0 coincides with (11.2).

Repeat the operation for f4 = −(ϵ1(x
4/24,Π

(2,3)
1 ))0.

f4 =

(
1
3

1
6

1
6

1
3

)[(
0

1/6

)
+ C(2)

(
1
1/2

)
+ C(3)

(
1
1

)]
−

−
(

1
2

1
2

− 1
2

1
2

)[(
0

1/24

)
+ C(2)

(
0
0

)
+ C(3)

(
0
0

)]
−

−
(

0 −1
0 0

)[(
−1/24

0

)
+ C(2)

(
−1/2
−1/2

)
+ C(3)

(
−1
−1

)]
=

(
−127/432
67/432

)
.

The system L(0)C(4)⃗e = f4 is inconsistent. Thus P = 2 and Q = 3 are the optimal values of the formal order of
accuracy and of the long­time simulation order.

11.2. Arbitrary order DG method915

In this subsection we demonstrate Algorithm 4 on the discontinuous Galerkin method based on the p­th order
polynomials, where p ∈ N. The discontinuous Galerkin method gives a scheme of the form

p∑
ξ=0

duη,ξ
dt

1∫
0

ϕξ(x)ψj(x)dx−
p∑

ξ=0

uη,ξ

1∫
0

ϕξ(x)ψ
′
j(x)dx+

p∑
ξ=0

uη,ξϕξ(1)ψj(1)−
p∑

ξ=0

uη−1,ξϕξ(1)ψj(0) = 0,
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where ϕξ, ξ = 0, . . . , p and ψj , j = 0, . . . , p are two bases in the space of polynomials of order p.
In this scheme we can choose the set of basis functions in the polynomial space and the initial local mapping Πh

at our convenience. Let xk and wk be the nodes and weights of the Gauss – Jacobi quadrature rule with p+ 1 nodes,
i. e. the quadrature rule on [0, 1] exact on the polynomials of order 2p such that xp = 1. Let {ϕξ(x), x ∈ [0, 1], ξ =
0, . . . , p} be the collocation basis with the nodes xξ, i. e. ϕξ(xζ) = 1 for ξ = ζ and 0 otherwise. Let the test functions
be ψj(x) = xj/j!, j = 0, . . . , p. Then we have

1∫
0

ϕξ(x)ψj(x)dx =

p∑
k=0

wkϕξ(xk)ψj(xk) = wξ

xjξ
j!
,

1∫
0

ϕξ(x)ψ
′
j(x)dx =

p∑
k=0

wkϕξ(xk)ψ
′
j(xk) = wξ

xj−1
ξ

(j − 1)!
,

and ϕξ(1) = 1 for ξ = p and 0 otherwise. So the scheme is of the form (2.8), namely,

Z0
duη
dt

+ L0uη + L−1uη−1 = 0,

Z0 =


w0 . . . wp−1 wp

w0x0 . . . wp−1xp−1 wpxp
w0x

2
0/2 . . . wp−1x

2
p−1/2 wpx

2
p/2

...
. . .

...
...

w0x
p
0/p! . . . wp−1x

p
p−1/p! wpx

p
p/p!

 , L−1 =


0 . . . 0 −1
0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

 ,

L0 =


0 . . . 0 1

−w0 . . . −wp−1 1− wp

−w0x0 . . . −wp−1xp−1 1/2− wpxp
...

. . .
...

...
−w0x

p−1
0 /(p− 1)! . . . −wp−1x

p−1
p−1/(p− 1)! 1/p!− wpx

p−1
p /(p− 1)!

 .

(11.3)

We equip the scheme with the mapping Πh defined by (Πhf)η,ξ = f(h(η + xξ)).
The bottom­left (p × p)­submatrix of L(0) = L−1 + L0 is the Vandermonde matrix with scaled columns, so it

is nonsingular. Thus dimKerL(0) = 1 and ImL(0) consists of the vectors with the first component equal to zero.
Denote e⃗ = (1, . . . , 1)T . We claim that L(0)⃗e = 0 and thus KerL(0) = span{⃗e}. Indeed, for j = 0 the equality
(L(0)⃗e)j = 0 is obvious; for j > 0 we have

(L(0)⃗e)j =
1

j!
−

p∑
ξ=0

wξ

xj−1
ξ

(j − 1)!
= 0.

The scheme is simple (dimKerL(0) = 1) and we can use Algorithm 4. We choose the mapping Ph defined
by (Phf)η,ξ = f(hη), ξ = 0, . . . , p. Step 5 of the algorithm defines the diagonal matrix C(m) as a solution of920

L(0)C(m)⃗e = fm. Since L(0)⃗e = 0, the general solution of this equation has the form C(m) + αI , α ∈ R, so we will
specify C(m) by C(n)

p,p = 0.
Step 1. We need to get the order of the truncation error. We have

−
(
ϵ1

(
xm

m!
,Π1

))
0

= Z0

(
Π1

xm−1

(m− 1)!

)
0

− L0

(
Π1

xm

m!

)
0

− L−1

(
Π1

xm

m!

)
−1

.

Componentwise,

−
(
ϵ1

(
xm

m!
,Π1

))
0,j

=
∑
ξ

(Z0)j,ξ

(
Π1

xm−1

(m− 1)!

)
0,ξ

−
∑
ξ

(L0)j,ξ

(
Π1

xm

m!

)
0,ξ

−
∑
ξ

(L−1)j,ξ

(
Π1

xm

m!

)
−1,ξ

.

Form = 0 this is zero, so assumem > 0. For j = 0 we have

−
(
ϵ1

(
xm

m!
,Π1

))
0,0

=
∑
ξ

wξ

xm−1
ξ

(m− 1)!
− 1

m!
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and for j = 1, . . . , p

−
(
ϵ1

(
xm

m!
,Π1

))
0,j

=
∑
ξ

wξ

xjξ
j!

xm−1
ξ

(m− 1)!
+
∑
ξ

wξ

xj−1
ξ

(j − 1)!

xmξ
m!

− 1

j!m!
=
m+ j

j!m!

∑
ξ

wξx
j+m−1
ξ − 1

m+ j

 .

Since xξ and wξ are nodes and weights of the quadrature rule of order 2p, then(
ϵ1

(
xm

m!
,Π1

))
0,j

= 0, j +m− 1 ⩽ 2p. (11.4)

Since the maximal value for j is p, then the truncation error is zero for m ⩽ p + 1. Thus the scheme possesses the
truncation error of order PA = p + 1. The value PA = p + 1 is optimal, otherwise the quadrature formula would be
exact on all polynomials of order 2p+ 1.925

Step 2. Putm = PA + 1 = p+ 2.
Steps 3, 4. Let C(n), n = p+ 2, . . . ,m− 1 be the coefficients already found by the algorithm by solving

L(0)C(n)e⃗ = fn, fn = −
(
ϵ1

(
xn

n!
,Π

(p+2,n−1)
1

))
0

(11.5)

for C(n). We claim that the first 2p+ 2− n components of the right­hand side of (11.5) are equal to zero. Indeed, for
n = p+ 2 this follows from (11.4). Assume this holds for all n′ = p+ 2, . . . , n− 1. Then

fn = −
(
ϵ1

(
xn

n!
,Π

(p+2,n−1)
1

))
0

= −
(
ϵ1

(
xn

n!
,Π1

))
0

+ Z0

n−1∑
n′=p+2

C(n′)

(
P1

xn−1−n′

(n− 1− n′)!

)
0

−

−L0

n−1∑
n′=p+2

C(n′)

(
P1

xn−n′

(n− n′)!

)
0

− L−1

n−1∑
n′=p+2

C(n′)

(
P1

xn−n′

(n− n′)!

)
−1

.

Recall that P1 takes the point value at x = 0 and C(n)
p,p = 0 for each n. Thus

fn = −
(
ϵ1

(
xn

n!
,Π1

))
0

+ Z0C
(n−1)e⃗.

For the first term on the right­hand side the first 2p+ 2− n components are zero (see (11.4)). For the second term on
the right­hand side by (11.3) and C(n′)

p,p = 0 for each n′ we have

(Z0C
(n−1)e⃗)j = (−L0C

(n−1)e⃗)j+1, j = 0, . . . , p− 1.

So by induction assumption the first 2p + 2 − n components of Z0C
(n−1)⃗e are also zero. Thus the first 2p + 2 − n

components of fn are equal to zero. In particular, for eachm ⩽ 2p+ 1 there holds fm0 = 0, i. e. fm ∈ ImL(0). For
m = 2p+ 2 this possibly will not hold (in fact – not possibly but definitely, but we have no proof for this).

Step 5. Put Q′ = m− 1. We know that at the last stagem was greater than or equal to 2p+ 2, thus Q′ ⩾ 2p+ 1.930

Step 6. Since Q′ ⩾ 2p+ 1 > PA = p+ 1, we have P ′ = PA + 1 = p+ 2.

Since the algorithm returns Q′ ⩾ 2p + 1, by Theorem 10.8 the DG scheme based on p­th order polynomials
possesses the long­time simulation order 2p+ 1. This proof can be considered as a variation of the proof in [15].

11.3. Alternating central difference scheme935

In this section we demonstrate Algorithm 3.
Let the set of the DOFs beM0 = {“L”, “R”}, |M0| = 2. We will treat the first DOF as a value in the node and

the second one as a value in the cell center. Correspondingly we define the pointwise map Πh as (Πhf)j,L = f(jh),
(Πhf)j,R = f(jh+ h/2), j ∈ Z.
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Derivatives at nodes are approximated by the 2­nd order central difference and derivatives at cell centers are
approximated by the 4­th order central difference. For brevity denote (uj)L = vj , (uj)R = vj+1/2, then

dvj
dt

+
vj+1/2 − vj−1/2

h
= 0, j ∈ Z;

dvj+1/2

dt
+

4

3

vj+1 − vj
h

− 1

3

vj+3/2 − vj−1/2

2h
= 0, j ∈ Z.

(11.6)

In the sense of Πh the scheme (11.6) possesses the second order of truncation error.940

The scheme can be rewritten in the block form

duj
dt

+ L−1uj−1 + L0uj + L1uj+1 = 0,

L−1 =

(
0 −1
0 1/6

)
, L0 =

(
0 1

−4/3 0

)
, L1 =

(
0 0
4/3 −1/6

)
.

The matrix L(ϕ) = e−iϕL−1 + L0 + eiϕL1 is

L (ϕ) =

(
0 1− e−iϕ

4
3 (−1 + eiϕ) − 1

6 (e
iϕ − e−iϕ)

)
=

(
0 2ie−iϕ/2 sin(ϕ/2)

8
3 ie

iϕ/2 sin(ϕ/2) − 1
3 i sin(ϕ)

)
.

The matrix A(ϕ) defined by (6.14) is

A (ϕ) =

(
iϕ −2ie−iϕ/2 sin(ϕ/2)

− 8
3 ie

iϕ/2 sin(ϕ/2) iϕ+ 1
3 i sin(ϕ)

)
.

The eigenvalues of A(ϕ) are equal to

λ±(ϕ) = iϕ+
1

6
i sin(ϕ)± 1

6
i sin(ϕ/2)κ(ϕ), κ(ϕ) =

√
194 + 2 cosϕ > 0.

The eigenvaules λ±(ϕ) are pure imaginary. For ϕ = 0 there holds A(ϕ) = 0. For ϕ ̸= 0 there holds λ+(ϕ) ̸=
λ−(ϕ). Thus for each ϕ the matrix A(ϕ) has two linearly independent eigenvectors. The matrices of the right and left
eigenvectors are

S(ϕ) =
1

4κ(ϕ)

(
2 exp(−iϕ/2) 2 exp(−iϕ/2)
iλ+/ sin(ϕ/2) iλ−/sin(ϕ/2)

)
, S−1(ϕ) =

(
exp(iϕ/2)(κ(ϕ)− 2 cos(ϕ/2)) −12
exp(iϕ/2)(κ(ϕ) + 2 cos(ϕ/2)) 12

)
.

For ϕ = 0 we take the corresponding limits. The first column of S(ϕ) and the first row of S−1(ϕ) correspond to
λ+(ϕ), the second ones to λ−(ϕ).

Since matrices S(ϕ) and S−1(ϕ) are bounded uniformly in ϕ ∈ R, this yields ∥ exp(A(ϕ)ν)∥ ⩽ K for ν ⩾ 0.
Thus the scheme (11.6) is stable.

The Taylor expansions of the eigenvalues are

λ+(ϕ) =
7

3
iϕ+O(ϕ3), λ−(ϕ) =

1

42
iϕ3 +O(ϕ5).

The Taylor expansions of the matrix S−1 is

S−1(ϕ) =

(
12 + 6iϕ− 9

7ϕ
2 + . . . −12

16 + 8iϕ− 16
7 ϕ

2 + . . . 12

)
.

Now consider the “block” map Πh defined as

(Πhf)j,L = (Πhf)j,R = f(jh).
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Then we have v(ϕ,Πh) = (1, 1)T and

S−1(ϕ)v(ϕ,Πh) =

(
6iϕ+O(ϕ2)
28 +O(ϕ)

)
.

Thuswe get ℵ̄ = {1, 3}, p1 = 1, p3 = 0. By Lemma 7.6 this yields ∥εh(t, v0,Πh)∥ ⩽ C1h∥∇v0∥∞+C2th
2∥∇3v0∥∞945

for each v0 ∈ C3
per(R).

Now we demonstrate Algorithm 3. Using Algorithm 1 it is easy to check in the sense of Πh the scheme possesses
the truncation error of order PA = 1 and not of order 2. Since A(0) = 0, by statement 5 of Theorem 1 there holds
P = PA = 1, and we can skip step 1 of the algorithm. Now put Ph = Πh and denote e⃗ = (1, 1)T . Consider the
system { (

ϵ1(x,Π
(1,2)
1 )

)
0
= 0;(

ϵ1(x
2/2,Π

(1,2)
1 )

)
0
= 0.

Since (ϵ1(x,Π1))0 = 0 and L(0) = 0, we have (ϵ1(x,Π
(1,2)
1 ))0 = (ϵ1(x,Π1))0+L(0)C

(1)⃗e = 0, so the first equation
holds for each C(1) and C(2). The second equation has the form

−
(
Π

(1,2)
1 (x)

)
0
+ L−1

(
Π

(1,2)
1 (x)

)
−1

+ L0

(
Π

(1,2)
1 (x)

)
0
+ L1

(
Π

(1,2)
1 (x)

)
1
= 0,

which expands to

−C(1)

(
1
1

)
+

(
0 −1
0 1/6

)[(
1/2
1/2

)
+ C(1)

(
−1
−1

)
+ C(2)e⃗

]
+

+

(
0 1

−4/3 0

)
C(2)e⃗+

(
0 0
4/3 −1/6

)[(
1/2
1/2

)
+ C(1)

(
1
1

)
+ C(2)e⃗

]
= 0.

Since L(0) = L−1 + L0 + L1 = 0, the terms with C(2) negate each other. Simplifying, we obtain the system for
C(1) = diag {C(1)

L ,C
(1)
R }: {

−C
(1)
L + C

(1)
R − 1

2 = 0;
4
3C

(1)
L − 4

3C
(1)
R + 2

3 = 0.

The solution of this system is

C(1) =

(
0 0
0 1/2

)
+ c1I, (11.7)

and the matrix C(2) is arbitrary. For c1 = 0 and C(2) = 0 we obtain the mapΠ(1,2)
h prescribed by (Πhf)

(1,2)
j,L = f(jh),

(Π
(1,2)
h f)j,R = f(jh) + (h/2)f ′(jh). Note that Π(1,2)

h f = Πhf +O(h2) for f smooth enough.
Following the algorithm write the system

(
ϵ1(x,Π

(1,3)
1 )

)
0
= 0;(

ϵ1(x
2/2,Π

(1,3)
1 )

)
0
= 0;(

ϵ1(x
3/6,Π

(1,3)
1 )

)
0
= 0.

for C(1),C(2),C(3). The first equation is valid for each C(m). The second one is equivalent to (11.7). By Lemma 10.7
we can drop the identity term in the expression (11.7) for C(1) by putting c1 = 0. The third one is

−C(2)

(
1
1

)
+

(
0 −1
0 1/6

)[(
−1/6
−1/6

)
+ C(1)

(
1/2
1/2

)
+ C(2)

(
−1
−1

)
+ C(3)e⃗

]
+

+

(
0 1

−4/3 0

)
C(3)e⃗+

(
0 0
4/3 −1/6

)[(
1/6
1/6

)
+ C(1)

(
1/2
1/2

)
+ C(2)

(
1
1

)
+ C(3)e⃗

]
= 0.
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Since L(0) = 0, the terms with C(3) negate each other. Substituting C(1)
L = 0, C(1)

R = 1/2 and simplifying,{
−C

(2)
L + C

(2)
R − 1

12 = 0;
4
3C

(2)
L − 4

3C
(2)
R + 1

6 = 0.

This system is inconsistent. This proves that the values P = 1 and Q = 2 are optimal.
950

Note that the use of Algorithm 4 would give the wrong result P ′ = Q′ = 1. Indeed, following Algorithm 4 we
write

f2 = −
(
ϵ1
(
x2/2,Π1

))
0
̸= 0

and f2 ̸∈ ImL(0) since ImL(0) = {0}.

11.4. Family of schemes with unlimited growth of C
In Theorem 1 for a scheme with the truncation error of order PA and the formal order of accuracy P = PA + 1

we proved the existence of Π(P,P )
h that gives the truncation error of order P with an estimate for C(m), |m| = P .

Theorem 3 does not give an analogous estimate on C(m). In this section we show that this estimate is not possible955

without additional assumptions.
Consider the family of schemes parametrized by γ > 0 with 3 DOFs per cell:

h
duj
dt

+

(
− 1

12
uj+2 +

2

3
uj+1 −

2

3
uj−1 +

1

12
uj−2

)
+M(uj+1 − 2uj + uj−1)− γGuj = 0,

where

G =

 0 1 −1
−1 0 1
1 −1 0

 , H =

 0 0 −1
0 0 1
1 −1 0

 , M = G+ γH.

It is of the form (2.8) with the coefficients

Z0 = I, L0 = −γG− 2M, L±1 =M ± 2I/3, L±2 = ∓I/12,

where I is the identity matrix. We will use the mapping Πh given by (Πhf)η,1 = (Πhf)η,2 = (Πhf)η,3 = f(ηh)
and the Euclidean norm on C3.

The matrix A(ϕ) for this scheme takes the form

A(ϕ) = iϕI − L(ϕ) =

= iϕI −
(
− I

12
e2iϕ + (M + 2I/3)eiϕ − γG− 2M + (M − 2I/3)e−iϕ +

I

12
e−2iϕ

)
=

= i

(
ϕ− 4

3
sinϕ+

1

6
sin 2ϕ

)
I + 4M sin2(ϕ/2) + γG =

= if(ϕ)I +

 0 γ + g −γ − g − γg
−γ − g 0 γ + g + γg

γ + g + γg −γ − g − γg 0

 ,

where
g = g(ϕ) = 4 sin2(ϕ/2), f(ϕ) = ϕ− 4

3
sinϕ+

1

6
sin 2ϕ = O(ϕ5).

Since A∗(ϕ) = −A(ϕ), the scheme is stable withK = 1. We have

v(ϕ,Πh) = (Π1e
iϕx)0 = e⃗ = (1, 1, 1)T ,

ϵ̂(ϕ,Πh) = A(ϕ)v(ϕ,Πh) = if(ϕ)

 1
1
1

+ γg(ϕ)

 −1
1
0

 ,
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so by Lemma 6.10 the optimal value of the order of the truncation error is PA = 1.
Introduce the function

w(ϕ) =
1

γ + g

 γ + g + γg
γ + g + γg
γ + g

 = e⃗+
γg(ϕ)

γ + g(ϕ)

 1
1
0

 .

By construction γ + g(ϕ) ⩾ γ > 0. There holds

∥w(ϕ)− v(ϕ,Πh)∥ ⩽
√
2g(ϕ) ⩽

√
2ϕ2, ∥w(ϕ)∥ ⩽

√
3 +

√
2ϕ2.

Since A(ϕ)w(ϕ) ≡ if(ϕ)w(ϕ), we have

∥A(ϕ)w(ϕ)∥ ⩽ c|ϕ|5(
√
3 +

√
2ϕ2)

with c independent of γ and ϕ. By Lemma 8.1 the scheme possesses the 2nd order of accuracy and the 4th order of960

the long­time simulation, and the constants in the estimate (2.17) are uniform with respect to γ.
Now we put Ph = Πh and find the values of C(m) providing the 4th order of the truncation error in the sense of

Π
(2,4)
h . We have L(0) = −γG and

−(ϵ1(x
2/2,Π1))0 = −M e⃗ = −γ(−1, 1, 0)T .

By Lemma 10.4 the diagonal matrix C(2) should satisfy −γGC(2)⃗e = −γ(−1, 1, 0)T , thus we get

C(2) =

 0 0 0
0 0 0
0 0 1

+ c2I,

where c2 ∈ R is arbitrary.
For any C(2) we have(

ϵ1

(
x3

6
,Π

(2,2)
1

))
0

=

(
ϵ1

(
x3

6
,Π1

))
0

−Z0C
(2)(Π11)0+

2∑
η=−2

LηC
(2)(Π1x)η =

(
−Z0 +

2∑
η=−2

ηLη

)
C(2)e⃗ = 0

and the system −γGC(3)⃗e = 0 yields C(3) = c3I , c3 ∈ R.
Further,(
ϵ1

(
x4

24
,Π

(2,3)
1

))
0

=

(
ϵ1

(
x4

24
,Π1

))
0

− Z0C
(3)(Π11)0 +

2∑
η=−2

LηC
(3)(Π1x)η +

2∑
η=−2

LηC
(2)

(
Π1

x2

2

)
η

=

=
1

12
M e⃗+

(
−Z0 +

2∑
η=−2

ηLη

)
C(3)e⃗+

(
2∑

η=−2

η2

2
Lη

)
C(2)e⃗ =

1

12
M e⃗+MC(2)e⃗ =

=
1

12
γ

 −1
1
0

+ (1 + γ)

 −1
1
0

+ c2γ

 −1
1
0

 =

(
1 + γ

(
13

12
+ c2

)) −1
1
0

 .

The solution of −γGC(4)⃗e = −(ϵ1(x
4/24,Π

(2,3)
1 ))0 is

C(4) =

(
1

γ
+

13

12
+ c2

) 0 0 0
0 0 0
0 0 1

+ c4I.

Looking on the expressions for C(2) and C(4) we see that we cannot choose c2, c3, and c4 such that C(2) and C(4) are
bounded uniformly in γ simultaneously.965

Note that since A(0) = −L(0) = γG, for each γ > 0 the scheme is “simple”. For γ = 0 the scheme possesses
the 4th order of accuracy and the 4th order in the long­time simulation, but it is no more “simple”: A(0) = 0.
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12. The bad

The crucial difference between the one­dimensional and multidimensional cases can be seen from the proof of
Lemma 9.20. Consider a scheme possessing the formal order of accuracy P and the long­time simulation order Q.970

The function W(P,Q)(ϕ) given by (8.5) can be componentwise represented as a ratio of the two analytical functions.
This ratio is bounded as ϕ → 0 (otherwise the scheme does not possess the orders P and Q). In 1D case (and this
remains true for quasi­1D case) this ratio is holomorphic. Then the Taylor expansion for W(P,Q)(ϕ) by Lemma 6.7
can be transformed to the coefficients of a local map Π(P,Q)

h that gives the Q­th order of the truncation error.
In the multidimensional case the ratio of two holomorphic functions can be bounded but not holomorphic. The975

example is f(ϕx, ϕy) = ϕxϕy/(ϕ
2
x + ϕxϕy + ϕ2y). Once the function W(P,Q)(ϕ) behaves like this, the auxiliary

mapping becomes non­local, see Section 12.2. Besides, the behavior of the solution error can become surprising.
Particularly, the optimal value of the long­time simulation order can be non­integer, see Section 12.4.

Let P ∈ N be the optimal value of the order of accuracy for the scheme (2.8). If one prescribes e ∈ Ω̊, this leads to
the 1D formulation. By Proposition 8.7 for each e ∈ Ω̊ theQ­th order of the long­time simulation order onHq

per,e(Rd)980

(with q big enough) is equivalent to the existence of Π(P,Q)
h,e providing the Q­th order of the truncation error on the

direction e. Here we have the following fork of the possible cases.

1. For some e ∈ Ω̊ there exist no C
(P )
e , …, C(Q)

e such that the mapping Π
(P,Q)
h,e given by (2.12) provides the Q­th

order of the truncation error on e. Then the scheme does not possess the orders P and Q. This may hold even
if the resulting system for C(P )

e , …, C(Q)
e is consistent for almost all e ∈ Ω, see an example in Section 12.1.985

2. For each e ∈ Ω̊ there exist C(m)
e ,m = P, . . . , Q, such that Π(P,Q)

h,e provides theQ­th order of accuracy on e and
sup
e∈Ω̊

∥C(m)
e ∥ < ∞, m = P, . . . , Q. Then by Corollary 6.19 the scheme possesses the formal order of accuracy

P and long­time simulation order Q. See an example in Section 12.2.
3. For each e ∈ Ω̊ there exist C(P )

e , …, C(Q)
e such that Π(P,Q)

h provides the Q­th order of accuracy on e but
the previous condition does not hold. Let P,Q′ be optimal values of the formal order of accuracy and of the990

long­time simulation order. Then the following cases are possible.
• Q′ ⩾ Q. See Section 12.3 for example.
• P ⩽ Q′ < Q, and Q′ may be not an integer. See Section 12.4 for example.

Throughout this section we consider the Cauchy problem for the transport equation (2.6), (2.7) in R2 with ω = 0.
We put a1 = (1, 0)T , a2 = (0, 1)T , so T = I . On CM0

the Euclidean norm will be implied. All the schemes995

considered in this section are artificial and not intended to represent any scheme used in practice. They have skew­
Hermitian matrixA(ϕ) and thus are stable withK = 1. Note thatω = 0 is not a limitation; to each scheme considered
in this section for the case of nonzero ω we can add the central difference approximation of ω · ∇u of the order high
enough. This will keep A(ϕ) skew­Hermitian and thus preserve the stability.

12.1. Minus­special direction with respect to the long­time simulation accuracy1000

The following scheme has the following properties: on C3
per,e(R2), is possesses the formal order of accuracy

P = 1 and the long­time simulation order Q = 1 if e is aligned with the vertical axis, and P = 1, Q = 2 otherwise.
I. e. the long­time simulation order degrades if the wave vector is aligned with the vertical axis.

PutM0 = {L,R}. Consider the scheme

h
duj,k
dt

+ E(uj+1,k − uj−1,k) +W (uj,k+1 − 2uj,k + uj,k−1) = 0,

E =

(
−1/2 1/2
1/2 −1/2

)
, W =

(
0 −1
1 0

)
.

It is of the form (2.8) with the coefficients Z0,0 = I ,

L0,0 = −2W, L±1,0 = ±E, L0,±1 =W,
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Unspecified coefficients are zero. The mapping Πh is defined by (Πhf)η,L = (Πhf)η,R = f(η1h, η2h), so
v(ϕ,Πh) = e⃗ = (1, 1)T . The matrix A(ϕ) = −L(ϕ) is

A(ϕ1, ϕ2) =

(
i sinϕ1 −i sinϕ1 − 4 sin2(ϕ2/2)

−i sinϕ1 + 4 sin2(ϕ2/2) i sinϕ1

)
. (12.1)

We have A(0) = 0 and A(ϕ)⃗e = 4 sin2(ϕ2/2)(−1, 1)T , thus the optimal values of the truncation error and of the
formal order of accuracy are PA = P = 1.1005

We look for the auxiliary mapping Π(1,2)
h,e of the form (2.13):

Π
(1,2)
h,e f = Πhf + hC(1)

e Πh
∂f

∂e
+ h2C(2)

e Πh
∂2f

∂e2

that provides the second order of the truncation error on planar waves aligned with e. Since L(0) = 0, the truncation
error on quadratic polynomials does not depend on C(2)

e , so it is enough to consider mappings of the form

Π
(1,1)
h,e f = Πhf + hCeΠh

∂f

∂e
. (12.2)

On the linear function we have (ϵ1(e · r,Π(1,1)
1,e ))0 = 0 for each Ce because L(0) = 0. For the quadratic function the

truncation error is (
ϵ1

(
(e · r)2

2
,Π

(1,1)
1,e

))
0

=
∑
η

Lη

(
(e · η)2

2
e⃗+ (e · η)Ce⃗e

)
.

Equating to zero and substituting the values of Lη we get e2yW e⃗+ 2exECe⃗e = 0. Substituting the values forW and
E we get

ex

(
−1 1
1 −1

)
(Ce⃗e) + e2y

(
−1
1

)
= 0.

For ex ̸= 0 the system is consistent and has the solution

Ce = −
e2y
ex

(
1 0
0 0

)
+ ceI, ce ∈ R,

while for ex = 0 the system is inconsistent. Thus for each e ∈ Ω̊ with ex ̸= 0 the scheme possesses the first order of
accuracy and the second order in the long­time simulation C3

per,e(R2). The following estimate is valid:

∥εh(t, eiα·r,Πh)∥ ⩽ min

{
2
α2
y

|αx|
h+ C2|α|3h2t, C3|α|2ht

}
.

Let us write the explicit expression for the solution error. Denote a = sinϕ1, b = 4 sin2(ϕ2/2), v = a+ bi. Then
(12.1) rewrites as

A(ϕ) =

(
ia −ia− b

−ia+ b ia

)
= SΛS−1,

where
S =

1

2

(
−1 1
v/|v| v/|v|

)
, Λ =

(
ia+ i|v| 0

0 ia− i|v|

)
, S−1 =

(
−1 v̄/|v|
1 v̄/|v|

)
.

Then
ε̂(ϕ, ν,Πh) =

(
eνA(ϕ) − I

)
e⃗ = S

(
(exp(iν(a+ |v|))− 1) (v̄/|v| − 1)
(exp(iν(a− |v|))− 1) (v̄/|v|+ 1)

)
.

Since A(0) = 0, the function ε̂(αh, t/h,Πh) is holomorphic in h (see Section 9.1). Thus it can be expressed using
the Taylor series in h. Omitting the calculations, we get
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S−1(αh)ε̂(αh, t/h,Πh) = i
α2
y

4αx
(1− exp(2itαx))h

(
1
0

)
+O(h2), αx > 0;

S−1(αh)ε̂(αh, t/h,Πh) = i
α2
y

4αx
(1− exp(2itαx))h

(
0
−1

)
+O(h2), αx < 0.

Thus for each αx ̸= 0 the term with h is a bounded function of the time. In contrast, for αx = 0 we have

exp(νA(ϕ)) =
(

cos(νb) − sin(νb)
sin(νb) cos(νb)

)
, ε̂(αh, t/h,Πh) =

(
cos(νb)− 1− sin(νb)
cos(νb)− 1 + sin(νb)

)
,

where νb = 4t sin2(αyh/2)/h. It is clear that there is no estimate of the form O(h+ h2t) for ε̂(αh, t/h,Πh).

12.2. The case of nonlocal auxiliary mapping
In this section we present a scheme that possesses the first order of accuracy and the second order in the long­time1010

simulation, however, there is no local mapping of the form (2.12) that gives the second order of the truncation error.
Consider the scheme with three degrees of freedom per cell given by

h
duj,k
dt

+ E(uj+1,k − uj−1,k) + F (uj,k+1 − uj,k−1) +W (uj+1,k+1 − uj+1,k−1 − uj−1,k+1 + uj−1,k−1) = 0,

E =

 1 0 −1
0 −1 1
−1 1 0

 , F =

 1 −1 0
−1 0 1
0 1 −1

 , W =

 0 1 0
−1 0 1
0 −1 0


and let Πh be given by (Πhf)η,ξ = f(η1h, η2h) for each ξ. This scheme is of the form (2.8) with Z(0,0) = I ,

L(−1,−1) =W, L(0,−1) = −F, L(1,−1) = −W,
L(−1,0) = −E, L(0,0) = 0, L(1,0) = E,

L(−1,1) = −W, L(0,1) = F, L(1,1) =W,

(all unspecified coefficients are zero).
We start with the analysis of the truncation error. We have (ϵ1(f,Π1))0 = (LΠ1f)0 =

∑
η Lη(Π1f)η and

(Π1r
m)η = ηme⃗, where e⃗ = (1, 1, 1)T ,∑

η

Lη = 0,
∑
η

η1Lη = 2E,
∑
η

η2Lη = 2F,

∑
η

η21Lη = 0,
∑
η

η1η2Lη = 4W,
∑
η

η22Lη = 0.

SinceEe⃗ = F e⃗ = 0, the scheme possesses the first order of the truncation error; sinceW e⃗ ̸= 0, it does not possess the
second order of the truncation error. Since L(0) = 0, by Theorem 1 the optimal order of accuracy is equal to P = 1.

Now we consider this scheme on C3
per,e(R2) for some e ∈ Ω̊. We will look for the auxiliary mappingΠ(1,1)

h,e given
by (12.2) providing the second order of the truncation error on e. Since the scheme possesses the first order of the
truncation error, we need to consider the function f(r) = (e · r)2/2 only. Write(

ϵ1(f,Π
(1,1)
1,e )

)
0
=
∑
η

Lη

(
(e · η)2

2
e⃗+ (e · η)Ce⃗e

)
= 4exeyW e⃗+ 2(exE + eyF )Ce⃗e.

Substituting the expressions for E, F , andW and equating to zero we get ex + ey −ey −ex
−ey −ex ex + ey
−ex ex + ey −ey

Ce⃗e = −2exey

 1
0
−1

 .
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The solution of this system is

Ce =
2exey

e2x + exey + e2y

 −ex 0 0
0 ey 0
0 0 0

+ ceI.

We can put ce = 0. Since Ce is bounded in e ∈ Ω̊, by Corollary 6.19 the scheme possesses the first order of accuracy1015

and the second order in the long­time simulation on C3
per(R2).

Now show that there exists no mappingΠ(1,2)
h of the form (2.12) providing the second order of the truncation error.

Indeed, since L(0) = 0, the truncation error in the sense of Π(1,2)
h on quadratic polynomials does not depend on C(m)

for eachm such that |m| = 2. Thus we need to check mappings Π(1,1)
h of the form(

Π
(1,1)
h f

)
η
= (Πhf)η + hC(x)

(
Πh

∂f

∂x

)
η

+ hC(y)

(
Πh

∂f

∂y

)
η

.

Considering f = x2/2we get C(x) ≡ Ce with e = (1, 0)T . Considering f = y2/2we get C(y) ≡ Ce with e = (0, 1)T .
Thus we get C(x) = κxI , C(y) = κyI , κx, κy ∈ R. It remains to see that the truncation error on f = xy is equal to
4Wh whatever κx and κy . Thus the mapping Π

(1,2)
h of the form (2.12) providing the second order of the truncation

error does not exist.1020

12.3. Fake special direction
Let a scheme of the form (2.8) possess the formal order of accuracy P ∈ N and the long­time simulation order

Q ∈ N, Q > P . By Lemma 8.7 for each e ∈ Ω̊ there exist coefficients C(m)
e , m = P, . . . , Q such that the scheme

possesses the truncation error of order Q in the sense of Π(P,Q)
h,e given by (2.13) on e. But it is generally impossible

to define these coefficients such that they satisfy max
m=P,...,Q

sup
e∈Ω̊

∥C(m)
e ∥ < ∞. To show this, we adapt the example of1025

Section 11.4.
Consider the scheme

h
duj,k
dt

+

2∑
η1=−2

2∑
η2=−2

Lη1,η2
uj+η1,k+η2

= 0

with
Lη1,η2

=
(
−c(2)η2

+ c(4)η1
+ c(4)η2

)
W +

(
c(2)η1

c(2)η2
+ c(4)η2

)
G,

W =

 0 1 −1
−1 0 1
1 −1 0

 , G =

 0 0 −1
0 0 1
1 −1 0

 ,

and c(m)
η be the coefficients of (5−m)­th order finite difference approximations of them­th derivative on the uniform

mesh with the unit step:
c
(2)
0 = −5/2; c

(2)
±1 = 4/3; c

(2)
±2 = −1/12;

c
(4)
0 = 6; c

(4)
±1 = −4; c

(4)
±2 = 1.

It is of the form (2.8) with Z0 = I , Zη = 0 for η ̸= 0 and Lη given above. Define Πh is by (Πhf)η,ξ = f(η1h, η2h)
for each ξ, so v(ϕ,Πh) = e⃗ = (1, 1, 1)T . The matrix L(ϕ) is

L(ϕ) = (F (2)(ϕ2) + F (4)(ϕ1) + F (4)(ϕ2))W + (F (2)(ϕ1)F
(2)(ϕ2) + F (4)(ϕ2))G,

where
F (m)(ψ) = (−i)m

∑
η

c(m)
η exp(iηψ) = ψm +O(|ψ|m+1). (12.3)
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Then

A(ϕ) = −L(ϕ) =

 0 −x x+ y
x 0 −x− y

−x− y x+ y 0

 ,

where

x ≡ x(ϕ) = F (2)(ϕ2) + F (4)(ϕ2) + F (4)(ϕ1), y ≡ y(ϕ) = F (2)(ϕ1)F
(2)(ϕ2) + F (4)(ϕ2). (12.4)

For ϕ in a neighborhood of ϕ = 0 introduce the vector

w(ϕ) =
1

x(ϕ)

 x(ϕ) + y(ϕ)
x(ϕ) + y(ϕ)

x(ϕ)

 =

 1
1
1

+
y(ϕ)

x(ϕ)

 1
1
0

 , ϕ ̸= 0; w(0) = 0.

Obviously, A(ϕ)w(ϕ) ≡ 0. Using (12.3) and v(ϕ,Πh) = (1, 1, 1)T in a neighborhood of ϕ = 0 we get

∥w(ϕ)− v(ϕ,Πh)∥ =

∣∣∣∣y(ϕ)x(ϕ)

∣∣∣∣
∥∥∥∥∥∥
 1

1
0

∥∥∥∥∥∥ =
√
2

∣∣∣∣ F (2)(ϕ1)F
(2)(ϕ2) + F (4)(ϕ2)

F (2)(ϕ2) + F (4)(ϕ2) + F (4)(ϕ1)

∣∣∣∣ ⩽ 2|ϕ|2.

By Lemma 8.1 the scheme possesses the second order of accuracy and the infinite order in the long­time simulation.
These values are not optimal (∥ϵ̂(ϕ,Πh)∥ ∼

√
2|y(ϕ)| = O(|ϕ|4), so the optimal value of the solution error is equal

to 3) but the scheme may be easily modified by adding a disjoint spurious component that will decrease the formal
order of accuracy.1030

Proposition 12.1. Let {C(m)
e ,m = 2, . . . , 9, e ∈ Ω̊} be a set of diagonal matrices such that for each e ∈ Ω̊ the

scheme possesses the truncation error of order 9 on the direction e in the sense of Π(2,9)
h,e given by (2.13). Then

max
m=2,...,9

sup
e∈Ω̊

∥C(m)
e ∥ = ∞.

Proof. Assume the converse, then for each e = (e1, e2) ∈ Ω̊ for the function

we(ψ) = v(ψe,Π
(2,9)
h,e ) =

(
I +

9∑
m=2

ψmC(m)
e

)
e⃗

in a neighborhood of ψ = 0 there holds

∥A(eψ)we(ψ)∥ ⩽ ce|ψ|10, ∥v(eψ,Πh)− we(ψ)∥ ⩽ ce|ψ|2, (12.5)

max
m=2,...,9

sup
e∈Ω̊

∥∥∥∥dmwedψm
(0)

∥∥∥∥ <∞. (12.6)

The eigenvalues ofA(ϕ) are 0 and±i(x2+2(x+y)2)1/2 where x and y are given by (12.4). The last two eigenvalues
satisfy |λ| ⩾ |ϕ|4/2 in a neighborhood of ϕ = 0. Thus the inequality ∥A(eψ)we(ψ)∥ = O(|ψ|10) is possible only if
there exists γe(ψ) > 0 such that we(ψ) = γe(ψ)w(eψ)+O(|ψ|6). Taking ψ = 0 we get γe(0) = 1. This means that
for ϕ = ψe we have

we(ψ) = γe(ψ)

 1
1
1

+
γe(ψ)y(eψ)

x(eψ)

 1
1
0

+O(|ψ|6). (12.7)

By assumption dnwe/dψn(0) is bounded in e forn = 0, . . . , 4. Taking the last component of (12.7) we see that this
also holds for the derivatives of γe(ψ); thus this holds for the derivatives of γe(ψ)y(eψ)/x(eψ) and y(eψ)/x(eψ).
But the Taylor expansion

y(ψe1, ψe2)

x(ψe1, ψe2)
≈ ψ4e22
ψ2e22 + ψ4(1− 2e21e

2
2)

= ψ2 1

1 + ψ2(e−2
2 − 2e21)

= ψ2 − ψ4(e−2
2 − 2e21) +O(ψ6)

shows that the 4­th derivative by ψ of this expression is of order e−2
2 . This contradiction proves the proposition.
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Note that there exist no mapping Π
(2,9)
h that gives the 9­th order of the truncation error. Assuming the con­

verse we get that v(ϕ,Π(2,9)
h ) is a holomorphic function satisfying ∥v(ϕ,Π(2,9)

h ) − v(ϕ,Πh)∥ = O(|ϕ|2) and
A(ϕ)v(ϕ,Π

(2,9)
h ) = O(|ϕ|10). Thus we(ψ) = v(eψ,Π

(2,9)
h ) satisfies (12.5) and (12.6), which leads to the same

contradiction as above.1035

12.4. Strange special direction
In this section we consider a family of schemes with the following properties. The optimal value of the order of

accuracy is equal to P = 1. For some q ∈ N and each e ∈ Ω̊ there exist diagonal matrices C(m)
e , m = 1, . . . , q,

such that the scheme possesses the truncation error of order q in the sense of Π(1,q)
h,e on the direction e. However, the

scheme does not possess the formal order P and the long­time simulation order q. For instance, the optimal value Q1040

of the long­time simulation order may be equal to q − 1 or q − 1/2.
Prior to construct the schemes we prove the following lemma. Denote Rd

+ = {(x1, . . . , xd) : x1, . . . , xd ⩾ 0}
and for x,y ∈ Rd

+ put xy = xy1

1 · . . . · xyd

d .

Lemma 12.2. Letm,nj ∈ Rd
+, j = 1, . . . , N . The following statements are equivalent.

1. The ratio of ϕm and
∑
j

ϕnj is bounded on [0, 1]d;1045

2. There exist δ1, . . . , δN ⩾ 0 with
∑
δj = 1 such that

∑
δjnj ⩽m.

Proof. Assume the second statement. Then for each ϕ ∈ [0, 1]d there holds

ϕm ⩽ ϕ
∑

δjnj =

N∏
j=1

(ϕnj )
δj ⩽

N∑
j=1

ϕnj .

The last inequality is due to the Young inequality. Thus we get the first statement.
Assume the first statement. Let q ∈ Rd

+. Put ϕ1 = εq1 , . . ., ϕd = εqd and send ε to zero. Since ϕm = εq·m and∑
j

ϕnj =
∑
j

εq·nj we get

q ·m ⩾ min
j
{q · nj}. (12.8)

Assume that the second statement does not hold. Let M = Conv{nj} + Rd
+ where the plus sign means the

Minkowski addition. Obviously, M is convex and m ̸∈ M . By the hyperplane separation theorem there exists
q ∈ Rd such that there holds q · a > C > q ·m for each a ∈M . Therefore

min
j
{q · nj} > C > q ·m. (12.9)

It remains to see that q ∈ Rd
+. Assume the converse, i. e. qk < 0 for some k. Let a ∈M . Consider the sequence

al = a+ l(0, . . . , 1, . . . , 0)T ,

where unit stays in the k­th position. This vector belongs to M by construction, but q · al → −∞ and thus can’t
be greater than C for each l. This contradiction proves that q ∈ Rd

+. So (12.9) contradicts (12.8), which proves the
lemma.1050

Now we construct the schemes. PutM0 = {1, 2, 3, 4} and consider the schemes of the form (2.8) with the coeffi­
cients Z0 = I ,

Lη = c(α)η1
c(β)η2

W + c(γ)η1
c(δ)η2

E + c(1)η1
R,

where α, β, γ are odd natural numbers and δ is an even natural number,

W =


0 1 −1 0
−1 0 1 0
1 −1 0 0
0 0 0 0

 , E =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 , R =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,
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and c(m)
η are the coefficients of high­order finite difference approximations for the m­th derivative on the uniform

mesh with the unit step such that c(m)
−η = (−1)mc

(m)
η . The order of the approximation should be not less than

max{α, β, γ, δ}+ 1−m. For example, for α = 5, β = γ = 1, δ = 8 we can put

c
(1)
±1 = ±4/5; c

(1)
±2 = ∓1/5; c

(1)
±3 = ±4/105; c

(1)
±4 = ∓1/280;

c
(5)
±1 = ±29/6; c

(5)
±2 = ∓13/3; c

(5)
±3 = ±3/2; c

(5)
±4 = ∓1/6;

c
(8)
0 = 70; c

(8)
±1 = −56; c

(8)
±2 = 28; c

(8)
±3 = −8; c

(8)
±4 = 1

(unspecified coefficients are zeros). The mapping Πh is defined by

(Πhf)η,ξ = f(ηh), ξ = 1, . . . , 3; (Πhf)η,4 = h
∂f

∂x
(ηh),

so v(ϕ,Πh) = (1, 1, 1, iϕx)
T . The matrix A(ϕ) = −L(ϕ) is

A(ϕ) = f(ϕ)W − ig(ϕ)E − iF (1)(ϕx)R, (12.10)

where
f(ϕ) = iα+β+2F (α)(ϕx)F

(β)(ϕy), g(ϕ) = iγ+δ−1F (γ)(ϕx)F
(δ)(ϕy), (12.11)

and
F (m)(ψ) = (−i)m

∑
η

c(m)
η exp(iηψ) = ψm +O(|ψ|max{α,β,γ,δ}+1).

Since (A(ϕ))∗ = −(A(ϕ)) the scheme is stable. Note that iα+β+2 = ±1 and iγ+δ−1 = ±1. By construction
F (m)(ψ), f(ϕ), and g(ϕ) are real­valued for real­valued ψ and ϕ.

Determine the order of the truncation error first. We have

ϵ̂(ϕ,Πh) = A(ϕ)v(ϕ,Πh) = (−ig(ϕ), 0, ig(ϕ), ϕxF (1)(ϕx))
T .

By assumption γ + δ ⩾ 3, then ϵ̂(ϕ,Πh) ⩽ c|ϕ|2 and the scheme possesses the truncation error of the order PA = 1.
Since the last component is of the second order as ϕx → 0, the value PA = 1 is optimal. Since A(0) = 0, by
Theorem 1 the optimal value of the order of accuracy is P = 1.1055

The optimal value of the long­time simulation order will be obtained with the use of Theorem 8.5. Since
A∗(ϕ) = −A(ϕ), the functional F(ϕ) defined by (8.9) can be rewritten as

F(ϕ) = |ϕ|−2P (ϵ̂(ϕ,Πh))
∗
(
A∗(ϕ)A(ϕ) + |ϕ|2(Q+1−P )

)−1

ϵ̂(ϕ,Πh).

Denote by A(ϕx, ϕy) the restriction of A(ϕx, ϕy) to the first three components. Taking into account that P = 1 we
get

F(ϕ) = |ϕ|−2(g(ϕ))2 (1, 0,−1)
(
A∗(ϕ)A(ϕ) + |ϕ|2Q

)−1

 1
0
−1

+
|ϕx|2

|ϕ|2
|F (1)(ϕx)|2

|F (1)(ϕx)|2 + |ϕ|2Q
.

The last term (corresponding to the last component of the solution error) is bounded for each Q. Now write

A ≡ A(ϕ) =

 −ig f −f
−f 0 f
f −f ig

 , A∗A = −A2 =

 g2 + 2f2 ifg − f2 −f2
−igf − f2 2f2 −igf − f2

−f2 igf − f2 g2 + 2f2

 ,

where f ≡ f(ϕ) and g ≡ g(ϕ) are defined by (12.11). Now see that (1, 0,−1)T is a right eigenvector of A∗A
corresponding to the eigenvalue 3f2 + g2. Thus

F(ϕ) = 2g2|ϕ|−2(3f2 + g2 + |ϕ|2Q)−1+ < bounded term > .
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(a) zones for (2γ, 2δ) for the cases (A), (B), (C), (D). Each inner
boundary belongs to the zone upper or right to it

(b) how to obtain the optimal value for Q for the case (C). Solid
line is the left­bottom boundary of the Newton polygon

Figure 4: Illustration to the example of Section 12.4

The optimal value of the long­time simulation order is the highest value Q such that F(ϕ) is bounded at ϕ = 0,
i. e. there exist c > 0 and a neighborhood of ϕ = 0 such that

∃ c : (g(ϕ))2 ⩽ c|ϕ|2(3(f(ϕ))2 + (g(ϕ))2 + |ϕ|2Q).

Now we substitute the expressions (12.11) for f(ϕ) and g(ϕ). Obviously, replacing a function F (m)(ϕj) by ϕmj does
not affect the condition to check. The multiplier 3 can be omitted also. Thus we need to check that

∃ c : ϕ2γx ϕ2δy ⩽ c
[
(ϕ2x + ϕ2y)(ϕ

2α
x ϕ2βy + ϕ2γx ϕ2δy ) + (ϕ2x + ϕ2y)

Q+1
]
.

The expression (ϕ2x + ϕ2y)
Q+1 is equivalent to |ϕx|2Q+2 + |ϕy|2Q+2. The term (ϕ2x + ϕ2y)ϕ

2γ
x ϕ2δy does not affect the

condition to check. Thus we get

∃ c : ϕ2γx ϕ2δy ⩽ c
[
ϕ2α+2
x ϕ2βy + ϕ2αx ϕ2β+2

y + ϕ2Q+2
x + ϕ2Q+2

y

]
. (12.12)

We need the biggest value of Q for which this condition is satisfied. Use Lemma 12.2 to find it. At the left­hand
side we have ϕm, wherem = (2γ, 2δ). At the right­hand side we have

∑4
j=1 ϕ

nj , where

n1 = (2α+ 2, 2β), n2 = (2α, 2β + 2), n3 = (2Q+ 2, 0), n4 = (0, 2 + 2Q).

We have four possible cases here.

(A) γ + δ < α+ β + 1. Then Q = γ + δ − 1, i. e. the long­time simulation order is defined by the truncation error
for the first three components of the solution.

(B) γ ⩾ α and δ ⩾ β, and γ + δ > α+ β. Then Q = ∞.
(C) γ < α, γ + δ ⩾ α+ β + 1. Then Q = β + α(δ − β − 1)/(α− γ).
(D) δ < β, γ + δ ⩾ α+ β + 1. Then Q = α+ β(γ − α− 1)/(β − δ).

In Fig. 4(a) for a fixed pair (α, β) the zones for (2γ, 2δ) corresponding to the cases (A), (B), (C), and (D) are
plotted. In Fig. 4(b) for the case (C) we illustrate the location ofm and nj . For example, for α = 5, β = γ = 1,
δ = 8 the optimal value for Q can be found from the condition that the points (10, 4), (2, 16), and (0, 2Q+ 2) can be
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connected by a straight line. Thus we get Q = 17/2. The solution error possesses the estimate O(h+ th17/2), and1060

the values P = 1, Q = 17/2 are optimal.

Compare this result with the accuracy on C1
per,e(R2) for a fixed e. If e = (±1, 0) or e = (0,±1) the first three

components of the solution error are zero. Otherwise we can write ϕx = e1ψ and ϕy = e2ψ, and the criterion (12.12)
reduces to

∃ c : ψ2(γ+δ) ⩽ c
[
ψ2(α+β+1) + ψ2Q+2

]
.

So in the case (A) we still have Q = γ + δ − 1. But in the cases (B), (C), (D) we have Q = ∞, i. e. the scheme
possesses the error estimate

∥εh(t, v0,Πh)∥ ⩽ C1(e)h∥∇v0∥ (12.13)

on C1
per,e(R2) for each e ∈ Ω̊.

This example also reveals the difference between the long­time simulation accuracy in the strong sense and in the1065

weak sense. To show this, we need an estimate for the multiplier C1(e) in (12.13). Theorem 8.5 does not provide this
estimate (one can obtain an estimate for C1(e) this way, but this is difficult due to the need of explicit control of the
neighborhood of ϕ = 0 where intermediate estimates are valid). We will use the direct spectral analysis instead.

Now we put α = 3, β = γ = 1, δ = 8.
The equation for the last component of the solution is separate from others, so we will consider only the first three

components. The eigenvalues of A(ϕ) are ±ir and 0 where r =
√
3f2 + g2 with f ≡ f(ϕ) and g ≡ g(ϕ) given by

(12.11). If f = g = 0, then A = 0 and the error is exactly zero; below assume r ̸= 0. We don’t need to provide an
explicit expression of the eigenvectors; it is enough to see that

A(ϕ) = S(ϕ)M(ϕ)S−1(ϕ),

where

S(ϕ) =
1

r


−ig r f 0
−f 0 f + ig 0
f −r f 0
0 0 0 r

 , M(ϕ) =


−f − ig 2r 0 0

−f(2f + ig)/r f + ig 0 0
0 0 0 0
0 0 0 −iF (1)(ϕx)

 ,

S−1(ϕ) =
1

r2


r(f + ig) −2fr r(f + ig) 0
f(2f + ig) −f(f + ig) ifg − g2 − f2 0

rf r(f − ig) rf 0
0 0 0 r2

 .

Obviously, ∥S(ϕ)∥ ⩽ c̃, ∥S−1(ϕ)∥ ⩽ c̃, where c̃ does not depend on ϕ, and by stability for each ν ⩾ 0 there
holds ∥ exp(νM(ϕ))∥ ⩽ ∥S(ϕ)∥ ∥ exp(νA(ϕ))∥ ∥S(ϕ)∥ ⩽ c̃2. Then

ε̂(ϕ, ν,Πh) =
(
eνA(ϕ) − I

)
v(ϕ,Πh) = S(ϕ)

(
eνM(ϕ) − I

)
S−1(ϕ)v(ϕ,Πh).

Denote by ∥ · ∥[1,2] and by ∥ · ∥[1,2,3] the seminorms on C4 defined as ∥(a, b, c, d)T ∥[1,2] =
√

|a|2 + |b|2, and
∥(a, b, c, d)T ∥[1,2,3] =

√
|a|2 + |b|2 + |c|2. Then

S−1(ϕ)v(ϕ,Πh) =


2ig/r

(ifg − g2)/r2

(3f − ig)/r
iϕx

 , ∥S−1(ϕ)v(ϕ,Πh)∥[1,2] =
√

4r2 + |g − if |2 |g|
r2

⩽
√
5
|g|
r
,

∥ε̂(ϕ, ν,Πh)∥[1,2,3] ⩽ ∥S(ϕ)∥

(
1 + sup

ν⩾0
∥eνM(ϕ)∥[1,2]

)
∥S−1(ϕ)v(ϕ,Πh)∥[1,2] ⩽

√
5(c̃+ c̃3)

|g|
r
.
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Neglecting high order terms we can write f ≈ iα+β+2ϕαxϕ
β
y and g ≈ iγ+δ−1ϕγxϕ

δ
y and, for the chosen parameters,

f ≈ −ϕ3xϕy and g ≈ ϕxϕ
8
y . Thus

∥ε̂(ϕ, ν,Πh)∥[1,2,3] ⩽ c
|ϕy|7

|ϕx|2 + |ϕy|7
= c

|ϕy|7/2

|ϕx|
|ϕx| |ϕy|7/2

|ϕx|2 + |ϕy|7
⩽ c

|ϕy|
|ϕx|

|ϕ|5/2. (12.14)

Let v0 ∈ H3
per(R2),N0 be its period. Then w = Πhv0 has the periodN0/h, so its Fourier series F [w](ϕ)may be

nonzero only for ϕ = 2πkh/N0, k ∈ (Z∩ [−N0/(2h), N0/(2h)))
2, see (6.1). For such ϕ, we have either ϕx = 0 or

|ϕy|
|ϕx|

=
|k2|
|k1|

⩽ |k2| =
N0

2πh
|ϕy|.

If ϕx ̸= 0, (12.14) yields

∥ε̂(ϕ, ν,Πh)∥[1,2,3] ⩽ c
N0

2πh
|ϕ|7/2 ⩽ c

N0√
2πh

|ϕ|3. (12.15)

If ϕx = 0 then A(ϕ) = 0 and (12.15) also holds. Adding the disjoined component, we finally obtain

∥ε̂(ϕ, ν,Πh)∥ ⩽ cN0h
−1|ϕ|3 + 2|ϕ|.

Note that H3
per(R2) ⊂⊂ Cper(R2), so Πh is well defined on H3

per(R2) and is a bounded homogeneous mapping
of H3

per(R2) to Vper. Let Fh be the operator that takes v0 ∈ H3
per(R2) to Fhv0 = εh(t, v0,Πh). By Lemma 6.9 we

have ∥Fh∥(3,h) ⩽ 2∥Πh∥(3,h). Thus the conditions of Lemma 6.14 are satisfied with p(|α|) = cN0h
2|α|3 + 2h|α|.

For each v0 ∈ H3
per(R2) with period N0 Lemma 6.14 yields

∥εh(t, v0,Πh)∥ ≡ ∥Fhv0∥ ⩽ C̃(h∥∇v0∥+N0h
2∥∇3v0∥).

This means that the scheme possesses the first formal order of accuracy and the infinite long­time simulation order on1070

H3
per(R2) in sense of Πh in the weak sense.
Note that the set of values α = 3, β = γ = 1, δ = 8 falls in the case (C) and the optimal values of the formal order

of accuracy and of the long­time simulation order in the strong sense are P = 1, Q = 10.

13. Order of accuracy depending on the transport velocity

Up to this point, we studied properties of a fixed scheme (2.8) for the transport equation (2.6) with a fixed the1075

transport velocity ω in (2.6). In this section we assume that the scheme coefficients linearly depend on ω = (ωx, ωy),
which is constant in space and time.

Consider the following scheme with three degrees of freedom per cell:

h
duj,k
dt

+ ωx
uj+1,k − uj−1,k

2
+ ωy

uj,k+1 − uj,k−1

2
+ ωxF (uj,k+1 − 2uj,k + uj,k−1) + ωyGuj,k = 0,

F =

 0 0 1
0 0 −1
−1 1 0

 , G =

 0 −1 0
1 0 0
0 0 0

 .

It is of the form (2.8) with Lη = L
(x)
η ωx + L

(y)
η ωy , where

Z0,0 = I, L
(x)
±1,0 = ±I/2, L(x)

0,±1 = F,L
(x)
0,0 = −2F,L

(y)
0,±1 = ±I/2, L(y)

0,0 = G,

and other coefficients are zero. Let Πh be given by

(Πhf)η,1 = (Πhf)η,2 = −h2 ∂
2f

∂x2
(ηh), (Πhf)η,3 = f(ηh).
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Then v(ϕ,Πh) = (ϕ2x, ϕ
2
x, 1)

T and A(ϕ) = iϕ · ω − L(ϕ) is

A(ϕ) = iωx(ϕx − sinϕx)I + iωy(ϕy − sinϕy)I +

 0 ωy ωxg(ϕy)
−ωy 0 −ωxg(ϕy)

−ωxg(ϕy) ωxg(ϕy) 0

 ,

where g(ϕy) = 4 sin2(ϕy/2). Since (A(ϕ))∗ = −A(ϕ), the scheme is stable with the stability constant K = 1 for
each ω. We have

ϵ̂(ϕ,Πh) = i [ωx(ϕx − sinϕx) + ωy(ϕy − sinϕy)]

 ϕ2x
ϕ2x
1

+
[
ωyϕ

2
x + 4ωx sin2(ϕy/2)

] 1
−1
0

 .

Thus for ω ̸= 0 we have ϵ̂(ϕ,Πh) = O(|ϕ|2) and the optimal value of the truncation error is PA = 1.
Now we use Theorem 1 to obtain the order of the solution error. We have

(Π1x
2/2)(ηx,ηy) = (−1,−1, η2x/2)

T ,

(Π1xy)(ηx,ηy) = (0, 0, ηxηy)
T ,

(Π1y
2/2)(ηx,ηy) = (0, 0, η2y/2)

T ,

so
(ϵ1(x

2/2,Πh))0 = −ωyG(−1,−1, 0)T = ωy(−1, 1, 0)T ,

(ϵ1(xy,Πh))0 = 0,

(ϵ1(y
2/2,Πh))0 = ωxF (0, 0, 1)

T = ωx(−1, 1, 0)T .

Note that L(0) = ωyG. If ωy ̸= 0, then all the vectors (ϵ1(x2/2,Πh))0, (ϵ1(xy,Πh))0, (ϵ1(y2/2,Πh))0 belong to
the image of L(0) and thus by Theorem 1 the scheme possesses the second order of accuracy. For ωy = 0, ωx ̸= 01080

the vector (ϵ1(y2/2,Πh))0 does not belong to ImL(0) = {0}, thus the scheme does not possess the second order of
accuracy.

14. Conclusion

The Lax – Ryabeknii theorem states that a stable scheme possessing the truncation error O(hPA) provides the
solution error with an estimate O(hPAt). For the classical finite­difference schemes these estimates are optimal,1085

however, for some schemes they can be very rough. The method of auxiliary mapping is a powerful tool to obtain
better estimates, which was successfully used for the DG scheme by several authors. However, up to now this method
has been applied on ad hoc basis.

We consider a linear L2­stable scheme with several degrees of freedom per cell on a uniform mesh and a local
mapping Πh to the mesh space. Based on the method of auxiliary mapping we present a unified approach to find the1090

largest possible P and, for this P , the largest possible Q such that the scheme possesses a solution error estimate of
the form O(hP + thQ). The outline of our results is below.

To analyze the accuracy of the scheme one first finds the optimal orderPA of the truncation error. The optimal value
P of the formal order of accuracy can be either PA or PA+1. To check which of these two cases holds, one considers
auxiliary mappings Π(PA+1,PA+1)

h of the form (2.12) with undetermined coefficients C(m). The condition that the1095

truncation error is of order PA + 1 in the sense of Π(PA+1,PA+1)
h forms linear systems for C(m), |m| = PA + 1. The

scheme possesses the order of accuracy P = PA+1 if and only if each of these systems is consistent, see Algorithm 2
for details. Below we assume that P > 0.

For a quasi­1D or a “simple” scheme (see Definitions 6 and 7), the optimal value of Q in an estimate of the
form O(hP + thQ) is an integer (or it can be infinity, if the transport velocity is zero). In order to check whether1100

the scheme possesses this estimate, one considers auxiliary mappings Π(P,Q)
h of the form (2.12) with undetermined

coefficients C(m). The condition that the truncation error is of order Q in the sense of Π(P,Q)
h forms a linear system

for C(m), P ⩽ |m| ⩽ Q. If this system is consistent, then the scheme possesses a solution error estimate of the form
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O(hP + thQ), otherwise it does not. See Algorithm 3 for details. For “simple” schemes the diagonal matrices C(m)

can be found successively, and thus Algorithm 3 simplifies to Algorithm 4.1105

If a scheme is neither quasi­1D nor simple, the situation may be tricky. The definitions of the long­time simulation
order in the weak and strong sense, namely Definition 3 and Definition 4, are not equivalent to each other. The
optimal value of the long­time simulation order Q (with the formal order P ) in the sense of Definition 4 is generally
not a natural number. If the scheme possesses the formal order of accuracy P and the long­time simulation order Q
in the sense of Definition 4, then there exists a homogeneous mapping Π̃h such that ∥Π̃hf −Πhf∥ = O(hP ) and the1110

scheme possesses the truncation error of orderQ in the sense of Π̃h. However, even ifQ is a natural number, there can
be no such local mapping and thus Algorithm 3 generally fails. A general criterion of the Q­th order in the long­time
simulation is given by Theorem 8.5, however we do not have an algorithm to check it.

In the general case one can specify a unit vector e and restrict the analysis to solutions of the form f(t, e · r) and
write a system for diagonal matrices C(m)

e , m = P, . . . , Q, such that the scheme possesses the long­time simulation1115

orderQ in the sense of the mappingΠ(P,Q)
e of the form (2.13). If these matrices are bounded over e on the unit sphere

then the scheme possesses the long­time simulation order Q. If for some e ∈ Ω̊ these matrices do not exist then the
scheme does not possess the long­time simulation order Q. If these matrices exist but there is no way to specify them
boundedly over the unit sphere then this tells us nothing.

All cases and methods mentioned above were demonstrated on the artificial examples of numerical schemes.1120

A. Appendix

Lemma A.1. Let n ∈ N ∪ {0} and w ∈ Hn
per(Rd). Then the values ∥∇nw∥2 defined by (2.2) and (2.5) coincide.

Proof. Let w ∈ Hn
per(Rd) have the Fourier series (2.4). For a multiindex n = (n1, . . . , nd), |n| = n, the Fourier

coefficients for the function Dnw are equal to (iα1)
n1 . . . (iαd)

ndwα. Hence, by Parseval’s identity

∥Dnw∥2 =
∑
α∈A

|α1|2n1 . . . |αd|2nd |wα|2.

Multiply this by n!/n! and take the sum over all multiindexes n such that |n| = n. We have

∥∇nw∥2 =
∑
α∈A

|wα|2
∑

n1⩾0,...,nd⩾0,
n1+...+nd=n

n!

n!

∣∣α2
1

∣∣n1
. . .
∣∣α2

d

∣∣nd
=

=
∑
α∈A

|wα|2
(
α2
1 + . . .+ α2

d

)n
=
∑
α∈A

|wα|2|α|2n.

The proof of the lemma is complete.

Lemma A.2. For e ∈ Ω̊ the spaces Hq
per,e(Rd) and Cq

per,e(Rd) are infinite dimensional for each q ∈ N ∪ {0}.

Proof. By definition there exists λ > 0 such that λe · aj = nj/dj , where nj ∈ Z and dj ∈ N, for all j = 1, . . . , d.
Considerm ∈ Z, the functions g(x) = exp(2πimλx) and f(r) = g(e · r). Then we have

f(r +N0aj) = g(e · r + e · ajN0) = g(e · r) exp(2πimλe · ajN0) = f(r) exp(2πimλe · ajN0).

Assuming N0 =
∏

j dj we get f(r +N0aj) = f(r) for each j = 1, . . . , d, then N0 is a period of f . Hence,1125

f ∈ Cq
per,e(Rd) ⊆ Hq

per,e(Rd).

Lemma A.3. Let G be a bounded domain in Rd. For each function f ∈ L2,per(Rd) with period N0 and each h such
that 1/h ∈ N there holds

Y (f) :=
1

(N0/h)d

∑
η∈{0,...,N0/h−1}d

∫
G

|f (hr + hTη)|2 dr ⩽ C∥f∥2 (A.1)

with C > 0 independent of f , N0, h.
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Proof. Let 2 be the parallelepiped generated by vectors N0a1, . . ., N0ad and 21 be the parallelepiped generated by
the vectors a1, . . . ,ad. If G is a translation of 21 then we have

1

(N0/h)d

∑
η∈{0,...,N0/h−1}d

∫
G

|f (hr + hTη)|2 dr =
1

Nd
0

∫
2

|f(r)|2 dr = |21| · ∥f∥2.

Since G is bounded, G belongs to the union ofm ∈ N translations of 21. Then (A.1) holds with C = m|21|.

Lemma A.4. A local mapping with kernel µ ∈ (W q
2 (G))

∗ is a bounded homogeneous mapping ofHq
per(Rd) to Vper.

Proof. We need to show that for a local mapping Πh with µ ∈ (W q
2 (G))

∗ the norm ∥Πh∥ = sup ∥Πhf∥/∥f∥(q,h) is
bounded. First equipW q

2 (G) with the norm

∥f∥2W q
2
=
∑

|m|⩽q

|m|!
m!

∫
G

|Dmf(r)|2dr.

Let f ∈ Hq
per(Rd) have a period N0. Put N = N0/h. By the norm equivalence on the finite­dimensional space

CM0

we get

∥Πhf∥2 =
1

Nd

∑
η∈{0,...,N−1}d

∥(Πhf)η∥2 ⩽ C
1

Nd

∑
η∈{0,...,N−1}d

∑
ξ∈M0

|(Πhf)η,ξ|2 .

The value of (Πhf)η,ξ results from the application of the functional µξ ∈ (W q
2 (G))

∗ to the function
g(r) = f(h(r + Tη)) so |(Πhf)η,ξ| ⩽ ∥µξ∥ ∥g∥W q

2 (G). Thus

∥Πhf∥2 ⩽ C|M0|
(
max
ξ∈M0

∥µξ∥
)2

1

Nd

∑
η∈{0,...,N−1}d

∑
|m|⩽q

h2|m| |m|!
m!

∫
G

|(Dmf)(h(r + Tη))|2 dr =

= C|M0|
(
max
ξ∈M0

∥µξ∥
)2 ∑

|m|⩽q

h2|m| |m|!
m!

Y (Dmf),

where Y is given by (A.1). By Lemma A.3 we get

∥Πhf∥2 ⩽ C̃
∑

|m|⩽q

h2|m| |m|!
m!

∥Dmf∥2 = C̃∥f∥2(q,h),

thus ∥Πh∥(q,h) ⩽ C̃ <∞.1130

Lemma A.5. Let {(e1 · r)m, . . . , (eJ · r)m} be a complete system in the space of homogeneous polynomials of order
m. Then {(e1 · r)n, . . . , (eJ · r)n} is a complete system in the space of homogeneous polynomials of order n ⩽ m.

Proof. For m = n this is obvious. If m > n choose any e0 ∈ Ω. Let u be a homogeneous polynomial of order
n. Then there exists a homogeneous polynomial U of order m such that u = (e0 · ∇)m−nU . For instance, one can

construct U using an (m− n)­th primitive of u(t(e0 · r)e0 + r − (e0 · r)e0). By assumption U =
J∑

j=1

Uj(ej · r)m,

thus

u(r) =

J∑
j=1

Uj(e0 · ∇)m−n(ej · r)m =
m!

n!

J∑
j=1

Uj(e0 · ej)m−n(ej · r)n.

Thus u ∈ span{(ej · r)n, j = 1, . . . , J}.
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LemmaA.6. Let n, d ∈ N,Ωd be the unit sphere inRd and C̆d be an open cone inRd. Then there exists a set of vectors
{ek ∈ Ω̊d ∩ C̆d, k = 1, . . . , Cd−1

n+d−1} such that {(ek · r)n} form a basis in the space of homogeneous polynomials of1135

order n of d variables.

Proof. First prove that there exists a set of vectors {ek ∈ Ωd ∩ C̆d, k = 1, . . . , Cd−1
n+d−1} such that {(ek · r)n} form

a basis in the space of homogeneous polynomials of order n of d variables.
Assume without loss that (1, 0, . . . , 0) ∈ C̆d.
The proof is by induction in d. For d = 1 the statement is obvious. Let us prove this for d = 2. Let k ∈ {0, . . . , n}.

Let α = (α0, . . . , αn) be a set of pairwise different numbers. Find γ = (γ0, . . . , γn) such that

xkyn−k =

n∑
j=0

γj(x+ αjy)
n.

This is equivalent to the system of equations

n∑
j=0

γjα
l
j =

δl,n−k

Cl
n

, l = 0, . . . , n.

This is a system of linear equations for γj with the Wandermond determinant and for any set of pairwise different αj1140

this system has a unique solution. Thus for d = 2 and any system of vectors ej = (1, αj), j = 0, . . . , n with pairwise
different αj the polynomials (ej · r)n form a basis in the space of homogeneous polynomials of order n. Clearly we
can choose α so that the vectors (1, αj) belong to C̆d.

Now let the statement hold for the space dimension d ⩾ 2, we will prove it for d + 1. Let {ej ∈ Ωd, j =
1, . . . , Cd−1

n+d−1}, be the set of vectors given by the induction assumption. Let {gj , j = 1, . . . , d+ 1} be the standard1145

basis in Rd+1. For r ∈ Rd+1 denote r = (r′, rd+1), r′ ∈ Rd.
Using the argument for d = 2, given any set of pairwise different numbers αj , j = 0, . . . , n, we can find γk,j ,

k, j = 0, . . . , n, such that

(r′ · e′)k(rd+1)
n−k =

n∑
j=0

γk,j((r
′ · e′) + αjrd+1)

n, e′, r′ ∈ Rd, rd+1 ∈ R.

By the induction assumption and Lemma A.5, for any multiindex k = (k1, . . . , kd) with |k| = k we can find coeffi­
cients βk,l, l = 1, . . . , J where J = Cd−1

n+d−1, such that

(r′)k =

J∑
l=1

βk,l(r
′ · el)k

and thus

(r′)k(rd+1)
n−k =

J∑
l=1

βk,l

n∑
j=0

γk,j((r
′ · el) + αjrd+1)

n.

So for any set of pairwise different numbers {αj}nj=0, for the system of vectors

el,j = (1 + α2
j )

−1/2(el, αj) ∈ Rd+1, l = 1, . . . , Cd−1
n+d−1, j = 0, . . . , n,

the set of polynomials (el,j · r)n forms a complete system in the space of homogeneous polynomials of order n in
d+ 1 variables. By construction all these vectors have the form t(1, αi1 , . . . , αid), ik ∈ {0, . . . , n}, t > 0. Choosing
sufficiently small α we can guarantee that these vectors belong to Ωd+1 ∩ C̆d. Extracting a basis from this complete
system we prove the induction statement.1150

Now let us show that we can find the required system of vectors in Ω̊d∩ C̆d. Let el ∈ Ωd∩ C̆d, l = 1, . . . , Cd−1
n+d−1

be the output of the argument above. It is clear that any set of vectors sufficiently close to a basis also form a basis.
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Given ε > 0, for each el we find a vector gl ∈ Qd such that ∥U−1el − gl∥ < ε. Then ∥el − Ugl∥ ⩽ ε∥U∥, thus
|∥Ugl∥ − 1| = |∥Ugl∥ − ∥el∥| ⩽ ε∥U∥ and∥∥∥∥el − Ugl

∥Ugl∥

∥∥∥∥ ⩽ ∥el − Ugl∥+
∥∥∥∥Ugl − Ugl

∥Ugl∥

∥∥∥∥ = ∥el − Ugl∥+ |∥Ugl∥ − 1| ⩽ 2ε∥U∥.

Thus for sufficienty small ε > 0 the system Ugl/∥Ugl∥ is the required set of vectors in Ω̊ ∩ C̆d.
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