CAA lab :: research code
Computational Aerodynamics & Aeroacoustics Laboratory
Keldysh Institute of Applied Mathematics of RAS
 
4, Miusskaya Sq., Moscow, 125047, Russia, phone: (7 499) 2207218
Main page

The parallel in-house research CFD&CAA code NOISEtte

  • Aerodynamics and aeroacoustics simulations
  • High-accuracy algorithms for unstructured hybrid meshes
  • Eddy-resolving modeling of compressible viscous flows
  • Multilevel MPI+OpenMP parallelization for 100K CPU cores
  • Language: C++03, MPI, OpenMP, fully-portable (Linux, Windows)

 

Mathematical basis

  • Compressible Navier – Stokes Equations 
  • Linearized Euler and Navier – Stokes equations
  • Reynolds averaged Navier – Stokes (RANS) equations:
    SA, K-epsilon, K-omega, SST
  • Large Eddy Simulation (LES):
    Smagorinsky, S3PQ, S3QR, S3PR, WALE, Sigma, Vreman, Verstappen
  • Detached Eddy Simulation (DES) and modifications
  • Immersed boundary condition (IBC)
  • FW/H far field acoustics

     

Numerical Techniques Implemented

Space Approximation
   • Hybrid unstructured meshes (elements up to 6 faces)
    Edge-based reconstruction schemes (EBR) 

        

    WENO and MUSCL-TVD extensions for discontinuous solutions  
    Riemann solvers: Roe, Rusanov, HLLE, HLLC, Godunov, ...
    Low-Mach: Turkel, Rieper, Thornber  
    Boundary conditions: non-reflecting, solid walls, periodic
     
Time Integration
    Explicit Runge – Kutta method (up to 4th order)
    Implicit method (up to 2th order) based on Newton linearization 
    Preconditioned BiCGSTAB for block sparse matrices

 

Current applications

  • Complex flows around obstacles considering acoustic effects
  • Modeling of subsonic and supersonic jets
  • Flows around wings and rotor blades
  • Flows around cavities and BFS configurations
  • Helicopter main rotor and tail rotor simulations
  • Numerical experiments on acoustic liners (fan noise reduction devices)
  • Modeling of impedance tubes with resonator chambers

Current development directions

  • Dynamically adapting meshes with constant topology
  • Immersed boundary conditions
  • New subgrid scales for unstructured meshes
  • High-Mach flows
  • Sliding meshes, high-accuracy sliding interfaces
  • Improvement of eddy-resolving modeling technology
  • New high-accuracy numerical schemes

 

Parallel performance

Parallel algorithm is based on a hybrid MPI+OpenMP approach which better fits modern architecture of a supercomputer with multi-core nodes.

Computing domain is decomposed among MPI processes, then among OpenMP threads

 Multilevel decomposition MPI+OpenMP

Parallel performance in real applications with EBR5 scheme, implicit time integration: HPC4 of KIAE, flow around a rotor blade, IDDES, 22M nodes (left); OpenMP performance on a 24-core CPU (Intel Xeon 8160), a round jet, IDDES, 1.6M nodes (center); Lomonosov, a 3D cavity, DES, 160M nodes (right)

Parallel efficiency of Noisette in real applications

 

 Publications:

  • A.Gorobets. Parallel Algorithm of the NOISEtte Code for CFD and CAA Simulations. Lobachevskii Journal of Mathematics. 2018, Vol. 39, No. 4, pp. 524–532.  https://doi.org/10.1134/S1995080218040078
  • Bakhvalov Pavel, Kozubskaya Tatiana. EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Computers and Fluids. 2017. Vol. 157, p. 312-324. https://doi.org/10.1016/j.compfluid.2017.09.004
  • Bakhvalov Pavel, Kozubskaya Tatiana. Modification of Flux Correction method for accuracy improvement on unsteady problems. Journal of Computational Physics, Volume 338, Pages 199–216. https://doi.org/10.1016/j.jcp.2017.02.053 
  • Bakhvalov Pavel,  Kozubskaya Tatiana. Construction of Edge-Based 1-Exact Schemes for Solving the Euler Equations on Hybrid Unstructured Meshes. Computational Mathematics and Mathematical Physics, 2017, Vol. 57, No. 4, pp. 680–697. https://doi.org/10.1134/S0965542517040030 
  • Bakhvalov Pavel, Abalakin Ilya, Kozubskaya Tatiana. Edge-based reconstruction schemes for unstructured tetrahedral meshes. International Journal for Numerical Methods in Fluids. 2016. Vol.81(6). P. 331–356. https://doi.org/10.1002/fld.4187
  • Gorobets Andrey. Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms. Computational Mathematics and Mathematical Physics. 2015. Vol. 55(4). P. 638-649. https://doi.org/10.1134/S0965542515040065
  • Абалакин И.В., Бахвалов П.А., Горобец А.В., Дубень А.П., Козубская Т.К., Параллельный программный комплекс NOISETTE для крупномасштабных расчетов задач аэродинамики и аэроакустики, Вычислительные методы и программирование. т.13 (2012), стр. 110-125. (PDF)
    Abalakin I. V., P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, Parallel research code NOISEtte for large-scale CFD and CAA simulations. Vychislitelnye Metody i Programmirovanie 13: 110-125, 2012 (in Russian)

 

 Recent applications:

  • Дубень А.П., Жданова Н.С., Козубская Т.К. Численное исследование влияния дефлектора на аэродинамические и акустические характеристики турбулентного течения в каверне. Известия Российской академии наук. Механика жидкости и газа. 2017, № 4, C. 1–12. DOI:10.7868/S0568528117040107
  • Duben Alexey, Kozubskaya Tatiana. Jet Noise Simulation Using Quasi-1D Schemes on Unstructured Meshes. AIAA AVIATION Forum 5-9 June 2017, Denver, Colorado 23rd AIAA/CEAS Aeroacoustics Conference. DOI:10.2514/6.2017-3856
  • Абалакин И.В., Аникин В.А., Бахвалов П.А., Бобков В.Г., Козубская Т.К. Численное исследование аэродинамических и акустических свойств винта в кольце. Известия Российской академии наук. Механика жидкости и газа. 2016. №3. С. 130-145.
    Abalakin Ilya, Anikin Viktor, Bakhvalov Pavel, Bobkov Vladimir, Kozubskaya Tatiana. Numerical Investigation of the Aerodynamic and Acoustical Properties of a Shrouded Rotor. Fluid Dynamics. 2016. Vol. 51(3). P. 419-433. DOI:10.1134/S0015462816030145
  • Даньков Б.Н., Дубень А.П., Козубская Т.К. Численное моделирование возникновения автоколебательного процесса возле трехмерного обратного уступа при трансзвуковом режиме обтекания. Известия Российской академии наук. Механика жидкости и газа. 2016.  N 4. С. 108-119.
    Dankov Boris, Duben Alexey, Kozubskaya Tatiana. Numerical modeling of the self-oscillation onset near a three-dimensional backward-facing step in a transonic flow. Fluid Dynamics. July 2016, Vol. 51(4),  pp 534–543. DOI: 10.1134/S001546281604013X
  • Dankov Boris, Duben Alexey, Kozubskaya Tatiana. Numerical simulation of the transonic turbulent flow around a wedge-shaped body with a backward-facing step. Mathematical Models and Computer Simulations. 2016 Vol.8(3), pp. 274–284. doi:10.1134/S2070048216030054.

 

Main page  |   Contacts (C) Copyright
Web-design: Cherepock, dualks