SVI problem: reference solution
Computational Aerodynamics & Aeroacoustics Laboratory
Keldysh Institute of Applied Mathematics of RAS
 
4, Miusskaya Sq., Moscow, 125047, Russia, phone: (7 499) 2207218
Main page

SVI problem

Reference numerical solution

To obtain the reference numerical solution, the modified formulation of the SVI problem is appied. The flow is simulated using the HR-MC+ scheme [9] with the artificial viscosity method AV [8] on uniform Catesian grid consisted of square h×cells, where h = 1/N = 1/7200, with constant timestep that corresponds to the CFL number 0.9. At the final time t1 = 0.5(1.4)–0.5, coordinates of the grid nodes and the uxuyρ, p variables are exported in binary format for the subdomain [–0.1, 1] × [0, 1]. Visualization of the reference numerical solution, download links for the corrisponding data and the comparison recommendations are presented below. The evolution of the reference flow is illustrated and described for the time interval t ∈ [0, t1] in the following presentation.

Numerical schlieren image Vorticity ω = ∂uy/∂x∂ux/∂y

Exported reference data

Binary file containing the reference solution for the subdomain [–0.1, 1] × [0, 1] (the corresponding subgrid consists of 7920×7200 cells) is recorded using the standard Fortran functions.

The format of this binary file is described in detail by the source code of the supplementary Fortran program which simplifies visualization process by translating the reference solution to the coarser Catesian grid defined on the domain [⁠–⁠0.1, 0.9] × [0, 1] and consisted of square 3h×3cells (2400×2400 cells in total). The translation procedure is consistent with the laws of conservation of mass, momentum and energy. The uvariable is adiitionaly adjusted by the value 3⋅(1.4)0.5 to provide corespondance to the basic formulation of the problem. Output of the supplementary Fortran program is ASCII file in Tecplot format that contains coordinates of the grid nodes and the uxuyρ, p variables.

This ASCII file can be used as an input for the simple Fortran program to generate additional ASCII file in Tecplot format that contains numerical schlieren and vorticify for the internal grid nodes (2399×2399 nodes in total). 

Recommended parameters for assessing accuracy of numerical solutions

  • Level of numerical artifacts behind the the main shock wave (e.g., by comparing the density at the x = 0.02 section for the numerical and reference solutions);
  • L2 norm of the density difference between the numerical and reference solutions (e.g., for the Ω [0.24, 0.4] × [0.46, 0.62] subdomain using the function ε = { ∑ij(ρij – ρij,ref)2 / [(i2i1+1)(j2j1+1)] }0.5/ρ⋅ 100%, where ρij and ρij,ref are the average density values at ij cell calculated for the numerical and reference solutions, i1 and i2 are the minimum and maximum indices along the x axis in the Ω subdomain, j1 and j2 are the minimum and maximum indices along the axis in the Ω subdomain, ρ2 is the density of the background flow ahead of the shock wave);
  • Minimum and maximum vorticity ω (e.g., in the Ω subdomain) for the numerical solution in comparison with the corresponding values calculated for the reference solution;
  • Intergal values of the enstropy components E = 0.25⋅∫(ω–|ω|)2dxdy and E+ = 0.25⋅∫(ω+|ω|)2dxdy (integration is performed over a certain subdomain, e.g., Ω; E = ∫ω2dxdy = EE+) in comparison with the corresponding values calculated for the reference solution.

The example of accuracy assesment for the numerical solutions obtained for the basic formulation of the SVI problem using some Godunov-type schemes on the uniform Cartesian grids consisting of square h×cells, where h = 1/N and N = 200, 300, 400, 600, 800, 1200 и 1600, is presented in [13].

 

Main page  |   Contacts
Web-design: Cherepock, dualks